1
|
Krenning EP, Kooij PP, Bakker WH, Breeman
WA, Postema PT, Kwekkeboom DJ, Oei HY, de Jong M, Visser TJ, Reijs
AE, et al: Radiotherapy with a radiolabeled somatostatin analogue,
[111In-DTPA-D-Phe1]-octreotide. A case history. Ann N Y Acad Sci.
733:496–506. 1994. View Article : Google Scholar : PubMed/NCBI
|
2
|
Strosberg J, El-Haddad G, Wolin E,
Hendifar A, Yao J, Chasen B, Mittra E, Kunz PL, Kulke MH, Jacene H,
et al: Phase 3 trial of 177Lu-dotatate for midgut
neuroendocrine tumors. N Engl J Med. 376:125–135. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kratochwil C, Lopez-Benitez R, Mier W,
Haufe S, Isermann B, Kauczor HU, Choyke PL, Haberkorn U and Giesel
FL: Hepatic arterial infusion enhances DOTATOC radiopeptide therapy
in patients with neuroendocrine liver metastases. Endocr Relat
Cancer. 18:595–602. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Virgolini I, Patri P, Novotny C, Traub T,
Leimer M, Füger B, Li SR, Angelberger P, Raderer M, Wogritsch S, et
al: Comparative somatostatin receptor scintigraphy using
in-111-DOTA-lanreo-tide and in-111-DOTA-Tyr3-octreotide versus
F-18-FDG-PET for evaluation of somatostatin receptor-mediated
radionuclide therapy. Ann Oncol. 12(Suppl 2): S41–S45. 2001.
View Article : Google Scholar
|
5
|
Claringbold PG, Price RA and Turner JH:
Phase I-II study of radiopeptide 177Lu-octreotate in combination
with capecitabine and temozolomide in advanced low-grade
neuroendocrine tumors. Cancer Biother Radiopharm. 27:561–569. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Kratochwil C, Giesel FL, Bruchertseifer F,
Mier W, Apostolidis C, Boll R, Murphy K, Haberkorn U and
Morgenstern A: 213Bi-DOTATOC receptor-targeted
alpha-radionuclide therapy induces remission in neuroendocrine
tumours refractory to beta radiation: A first-in-human experience.
Eur J Nucl Med Mol Imaging. 41:2106–2119. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chan HS, Konijnenberg MW, Daniels T, Nysus
M, Makvandi M, de Blois E, Breeman WA, Atcher RW, de Jong M and
Norenberg JP: Improved safety and efficacy of
213Bi-DOTATATE-targeted alpha therapy of somatostatin
receptor-expressing neuroendo-crine tumors in mice pre-treated with
L-lysine. EJNMMI Res. 6:832016. View Article : Google Scholar
|
8
|
Miederer M, Henriksen G, Alke A,
Mossbrugger I, Quintanilla-Martinez L, Senekowitsch-Schmidtke R and
Essler M: Preclinical evaluation of the alpha-particle generator
nuclide 225Ac for somatostatin receptor radiotherapy of
neuro-endocrine tumors. Clin Cancer Res. 14:3555–3561. 2008.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Maier P, Hartmann L, Wenz F and Herskind
C: Cellular pathways in response to ionizing radiation and their
targetability for tumor radiosensitization. Int J Mol Sci. 17:pii:
E102. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Den RB and Lu B: Heat shock protein 90
inhibition: Rationale and clinical potential. Ther Adv Med Oncol.
4:211–218. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pennisi R, Ascenzi P and di Masi A:
Correction: Pennisi, R., et al. Hsp90: A new player in DNA repair?
Biomolecules. 2015.5:2589–2618, Biomolecules 6: pii: E40, 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Gilbert JA, Adhikari LJ, Lloyd RV,
Halfdanarson TR, Muders MH and Ames MM: Molecular markers for novel
therapeutic strategies in pancreatic endocrine tumors. Pancreas.
42:411–421. 2013. View Article : Google Scholar :
|
13
|
Gilbert JA, Adhikari LJ, Lloyd RV, Rubin
J, Haluska P, Carboni JM, Gottardis MM and Ames MM: Molecular
markers for novel therapies in neuroendocrine (carcinoid) tumors.
Endocr Relat Cancer. 17:623–636. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gloesenkamp C, Nitzsche B, Lim AR, Normant
E, Vosburgh E, Schrader M, Ocker M, Scherübl H and Höpfner M: Heat
shock protein 90 is a promising target for effective growth
inhibition of gastrointestinal neuroendocrine tumors. Int J Oncol.
40:1659–1667. 2012.PubMed/NCBI
|
15
|
Zitzmann K, Ailer G, Vlotides G, Spoettl
G, Maurer J, Göke B, Beuschlein F and Auernhammer CJ: Potent
antitumor activity of the novel HSP90 inhibitors AUY922 and HSP990
in neuroendocrine carcinoid cells. Int J Oncol. 43:1824–1832. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Mendoza MC, Er EE and Blenis J: The
Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends
Biochem Sci. 36:320–328. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yao JC, Shah MH, Ito T, Bohas CL, Wolin
EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, de Vries EG,
et al: Everolimus for advanced pancreatic neuroendocrine tumors. N
Engl J Med. 364:514–523. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yao JC, Fazio N, Singh S, Buzzoni R,
Carnaghi C, Wolin E, Tomasek J, Raderer M, Lahner H, Voi M, et al:
Everolimus for the treatment of advanced, non-functional
neuroendocrine tumours of the lung or gastrointestinal tract
(RADIANT-4): A randomised, placebo-controlled, phase 3 study.
Lancet. 387:968–977. 2016. View Article : Google Scholar
|
19
|
Fazio N, Granberg D, Grossman A, Saletan
S, Klimovsky J, Panneerselvam A and Wolin EM: Everolimus plus
octreo-tide long-acting repeatable in patients with advanced lung
neuroendocrine tumors: Analysis of the phase 3, randomized,
placebo-controlled RADIANT-2 study. Chest. 143:955–962. 2013.
View Article : Google Scholar
|
20
|
Hong DS, Banerji U, Tavana B, George GC,
Aaron J and Kurzrock R: Targeting the molecular chaperone heat
shock protein 90 (HSP90): Lessons learned and future directions.
Cancer Treat Rev. 39:375–387. 2013. View Article : Google Scholar
|
21
|
Shapiro GI, Kwak E, Dezube BJ, Yule M,
Ayrton J, Lyons J and Mahadevan D: First-in-human phase I dose
escalation study of a second-generation non-ansamycin HSP90
inhibitor, AT13387, in patients with advanced solid tumors. Clin
Cancer Res. 21:87–97. 2015. View Article : Google Scholar
|
22
|
National Library of Medicine National
Institutes of Health: Onalespib, Dabrafenib, and trametinib in
treating patients with BRAF-mutant melanoma or solid tumors that
are metastatic or cannot Be removed by surgery. 2019
|
23
|
Spiegelberg D, Dascalu A, Mortensen AC,
Abramenkovs A, Kuku G, Nestor M and Stenerlöw B: The novel HSP90
inhibitor AT 13387 potentiates radiation effects in squamous cell
carcinoma and adenocarcinoma cells. Oncotarget. 6:35652–35666.
2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Townsend CM Jr, Ishizuka J and Thompson
JC: Studies of growth regulation in a neuroendocrine cell line.
Acta Oncol. 32:125–130. 1993. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gazdar AF, Helman LJ, Israel MA, Russell
EK, Linnoila RI, Mulshine JL, Schuller HM and Park JG: Expression
of neuro-endocrine cell markers L-dopa decarboxylase, chromogranin
A, and dense core granules in human tumors of endocrine and
nonendocrine origin. Cancer Res. 48:4078–4082. 1988.PubMed/NCBI
|
26
|
Banks-Schlegel SP, Gazdar AF and Harris
CC: Intermediate filament and cross-linked envelope expression in
human lung tumor cell lines. Cancer Res. 45:1187–1197.
1985.PubMed/NCBI
|
27
|
Friedrich J, Seidel C, Ebner R and
Kunz-Schughart LA: Spheroid-based drug screen: Considerations and
practical approach. Nat Protoc. 4:309–324. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Schindelin J, Arganda-Carreras I, Frise E,
Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, et al: Fiji: An open-source platform for biological-image
analysis. Nat Methods. 9:676–682. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chou TC and Talalay P: Quantitative
analysis of dose-effect relationships: The combined effects of
multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 22:27–55.
1984. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zitzmann K, Ruden J, Brand S, Göke B,
Lichtl J, Spöttl G and Auernhammer CJ: Compensatory activation of
Akt in response to mTOR and Raf inhibitors-a rationale for
dual-targeted therapy approaches in neuroendocrine tumor disease.
Cancer Lett. 295:100–109. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Briest F and Grabowski P:
PI3K-AKT-mTOR-signaling and beyond: The complex network in
gastroenteropancreatic neuro-endocrine neoplasms. Theranostics.
4:336–365. 2014. View Article : Google Scholar :
|
32
|
Spiegelberg D, Mortensen AC, Selvaraju RK,
Eriksson O, Stenerlöw B and Nestor M: Molecular imaging of EGFR and
CD44v6 for prediction and response monitoring of HSP90 inhibition
in an in vivo squamous cell carcinoma model. Eur J Nucl Med Mol
Imaging. 43:974–982. 2016. View Article : Google Scholar :
|
33
|
Beck R, Verrax J, Gonze T, Zappone M,
Pedrosa RC, Taper H, Feron O and Calderon PB: Hsp90 cleavage by an
oxidative stress leads to its client proteins degradation and
cancer cell death. Biochem Pharmacol. 77:375–383. 2009. View Article : Google Scholar
|
34
|
Beck R, Dejeans N, Glorieux C, Creton M,
Delaive E, Dieu M, Raes M, Levêque P, Gallez B, Depuydt M, et al:
Hsp90 is cleaved by reactive oxygen species at a highly conserved
N-terminal amino acid motif. PLoS One. 7:e407952012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ding D, Zhang Y, Wang J, Zhang X, Gao Y,
Yin L, Li Q, Li J and Chen H: Induction and inhibition of the
pan-nuclear gamma-H2AX response in resting human peripheral blood
lymphocytes after X-ray irradiation. Cell Death Discov.
2:160112016. View Article : Google Scholar : PubMed/NCBI
|