1
|
Song Y, Li L, Ou Y, Gao Z, Li E, Li X,
Zhang W, Wang J, Xu L, Zhou Y, et al: Identification of genomic
alterations in oesophageal squamous cell cancer. Nature. 509:91–95.
2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Song QK, Li J, Jiang HD, He YM, Zhou XQ
and Huang CY: Esophageal cancer mortality during 2004-2009 in
yanting county, China. Asian Pac J Cancer Prev. 13:5003–5006. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Wei WQ, Yang J, Zhang SW, Chen WQ and Qiao
YL: Esophageal cancer mortality trends during the last 30 years in
high risk areas in China: Comparison of results from national death
surveys conducted in the 1970's, 1990's and 2004-2005. Asian Pac J
Cancer Prev. 12:1821–1826. 2011.PubMed/NCBI
|
4
|
Brooks-Brunn JA: Esophageal cancer: An
overview. Medsurg Nurs. 9:248–254. 2000.
|
5
|
Raman NV and Small W Jr: The role of
radiation therapy in the management of esophageal cancer. Cancer
Control. 6:53–62. 1999. View Article : Google Scholar
|
6
|
Michna A, Schotz U, Selmansberger M,
Zitzelsberger H, Lauber K, Unger K and Hess J: Transcriptomic
analyses of the radiation response in head and neck squamous cell
carcinoma subclones with different radiation sensitivity:
Time-course gene expression profiles and gene association networks.
Radiat Oncol. 11:942016. View Article : Google Scholar : PubMed/NCBI
|
7
|
McDermott N, Meunier A, Mooney B, Nortey
G, Hernandez C, Hurley S, Lynam-Lennon N, Barsoom SH, Bowman KJ,
Marples B, et al: Fractionated radiation exposure amplifies the
radioresistant nature of prostate cancer cells. Sci Rep.
6:347962016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Park M, Yoon HJ, Kang MC, Kwon J and Lee
HW: PTK7 regulates radioresistance through nuclear factor-kappa B
in esophageal squamous cell carcinoma. Tumour Biol. 37:14217–14224.
2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pan F, Mao H, Bu F, Tong X, Li J, Zhang S,
Liu X, Wang L, Wu L, Chen R, et al: Sp1-mediated transcriptional
activation of miR-205 promotes radioresistance in esophageal
squamous cell carcinoma. Oncotarget. 8:5735–5752. 2017.
|
10
|
Roychowdhury S and Chinnaiyan AM:
Translating cancer genomes and transcriptomes for precision
oncology. CA Cancer J Clin. 66:75–88. 2016. View Article : Google Scholar :
|
11
|
Shyr D and Liu Q: Next generation
sequencing in cancer research and clinical application. Biol Proced
Online. 15:42013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kolodziejczyk AA, Kim JK, Svensson V,
Marioni JC and Teichmann SA: The technology and biology of
single-cell RNA sequencing. Mol Cell. 58:610–620. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu H, Yu J, Li Y, Hou Q, Zhou R, Zhang N,
Jing Z, Jiang M, Li Z, Hua Y, et al: Single-cell RNA sequencing
reveals diverse intratumoral heterogeneities and gene signatures of
two types of esophageal cancers. Cancer Lett. 438:133–143. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Fuller TF, Ghazalpour A, Aten JE, Drake
TA, Lusis AJ and Horvath S: Weighted gene coexpression network
analysis strategies applied to mouse weight. Mamm Genome.
18:463–472. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Presson AP, Sobel EM, Papp JC, Suarez CJ,
Whistler T, Rajeevan MS, Vernon SD and Horvath S: Integrated
weighted gene co-expression network analysis with an application to
chronic fatigue syndrome. BMC Syst Biol. 2:952008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang B and Horvath S: A general framework
for weighted gene co-expression network analysis. Stat Appl Genet
Mol Biol. 4:172005. View Article : Google Scholar
|
18
|
Jing Z, Gong L, Xie CY, Zhang L, Su HF,
Deng X and Wu SX: Reverse resistance to radiation in KYSE-150R
esophageal carcinoma cell after epidermal growth factor receptor
signal pathway inhibition by cetuximab. Radiother Oncol.
93:468–473. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu H, Zhang XY, Hu Z, Hou Q, Zhang H, Li
Y, Li S, Yue J, Jiang Z, Weissman SM, et al: Evolution and
heterogeneity of non-hereditary colorectal cancer revealed by
single-cell exome sequencing. Oncogene. 36:2857–2867. 2017.
View Article : Google Scholar
|
20
|
Picelli S, Björklund ÅK, Faridani OR,
Sagasser S, Winberg G and Sandberg R: Smart-seq2 for sensitive
full-length transcrip-tome profiling in single cells. Nat Methods.
10:1096–1098. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bolger AM, Lohse M and Usadel B:
Trimmomatic: A flexible trimmer for Illumina sequence data.
Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Trapnell C, Roberts A, Goff L, Pertea G,
Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L:
Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nat Protoc. 7:562–578. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kharchenko PV, Silberstein L and Scadden
DT: Bayesian approach to single-cell differential expression
analysis. Nat Methods. 11:740–742. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Suzuki A, Matsushima K, Makinoshima H,
Sugano S, Kohno T, Tsuchihara K and Suzuki Y: Single-cell analysis
of lung adenocarcinoma cell lines reveals diverse expression
patterns of individual cells invoked by a molecular target drug
treatment. Genome Biol. 16:662015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Trapnell C, Cacchiarelli D, Grimsby J,
Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS and
Rinn JL: The dynamics and regulators of cell fate decisions are
revealed by pseudotem-poral ordering of single cells. Nat
Biotechnol. 32:381–386. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Julia M, Telenti A and Rausell A: Sincell:
An R/Bioconductor package for statistical assessment of cell-state
hierarchies from single-cell RNA-seq. Bioinformatics. 31:3380–3382.
2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kanda Y, Nishiyama Y, Shimada Y, Imamura
M, Nomura H, Hiai H and Fukumoto M: Analysis of gene amplification
and overexpression in human esophageal-carcinoma cell lines. Int J
Cancer. 58:291–297. 1994. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tanaka H, Shibagaki I, Shimada Y, Wagata
T, Imamura M and Ishizaki K: Characterization of p53 gene mutations
in esophageal squamous cell carcinoma cell lines: Increased
frequency and different spectrum of mutations from primary tumors.
Int J Cancer. 65:372–376. 1996. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wilson WR and Hay MP: Targeting hypoxia in
cancer therapy. Nat Rev Cancer. 11:393–410. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yang Y, Yang Y, Yang X, Zhu H, Guo Q, Chen
X, Zhang H, Cheng H and Sun X: Autophagy and its function in
radiosensi-tivity. Tumour Biol. 36:4079–4087. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Centurione L and Aiello FB: DNA repair and
cytokines: TGF-β, IL-6, and thrombopoietin as different biomarkers
of radioresis-tance. Front Oncol. 6:1752016. View Article : Google Scholar
|
34
|
Chang L, Graham PH, Ni J, Hao J, Bucci J,
Cozzi PJ and Li Y: Targeting PI3K/Akt/mTOR signaling pathway in the
treatment of prostate cancer radioresistance. Crit Rev Oncol
Hematol. 96:507–517. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zheng H, Wang M, Wu J, Wang ZM, Nan HJ and
Sun H: Inhibition of mTOR enhances radiosensitivity of lung cancer
cells and protects normal lung cells against radiation. Biochem
Cell Biol. 94:213–220. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jiang G, Lin J, Wang W, Sun M, Chen K and
Wang F: WNT5A promoter methylation is associated with better
responses and longer progression-free survival in colorectal cancer
patients treated with 5-fluorouracil-based chemotherapy. Genet Test
Mol Biomarkers. 21:74–79. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hu B, Wang Q, Wang YA, Hua S, Sauve CG,
Ong D, Lan ZD, Chang Q, Ho YW, Monasterio MM, et al: Epigenetic
activation of WNT5A drives glioblastoma stem cell differentiation
and invasive growth. Cell. 167:1281–1295.e18. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Deplus R, Delliaux C, Marchand N, Flourens
A, Vanpouille N, Leroy X, de Launoit Y and Duterque-Coquillaud M:
TMPRSS2-ERG fusion promotes prostate cancer metastases in bone.
Oncotarget. 8:11827–11840. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li ZH, Zheng R, Chen JT, Jia J and Qiu M:
The role of copper transporter ATP7A in platinum-resistance of
esophageal squamous cell cancer (ESCC). J Cancer. 7:2085–2092.
2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bonito B, Sauter DR, Schwab A, Djamgoz MB
and Novak I: KCa3.1 (IK) modulates pancreatic cancer cell
migration, invasion and proliferation: Anomalous effects on
TRAM-34. Pflugers Arch. 468:1865–1875. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Brett-Morris A, Wright BM, Seo Y,
Pasupuleti V, Zhang J, Lu J, Spina R, Bar EE, Gujrati M, Schur R,
et al: The polyamine catabolic enzyme SAT1 modulates tumorigenesis
and radiation response in GBM. Cancer Res. 74:6925–6934. 2014.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Li Z, Zhou Y, Tu B, Bu Y, Liu A and Xie C:
Long noncoding RNA MALAT1 affects the efficacy of radiotherapy for
esophageal squamous cell carcinoma by regulating Cks1 expression. J
Oral Pathol Med. 46:583–590. 2017. View Article : Google Scholar
|
43
|
Jin C, Yan B, Lu Q, Lin Y and Ma L: The
role of MALAT1/miR-1/slug axis on radioresistance in nasopharyngeal
carcinoma. Tumour Biol. 37:4025–4033. 2016. View Article : Google Scholar
|
44
|
Minchenko OH, Kharkova AP, Kubaichuk KI,
Minchenko DO, Hlushchak NA and Kovalevska OV: Effect of hypoxia on
the expression of CCN2, PLAU, PLAUR, SLURP1, PLAT and ITGB1 genes
in ERN1 knockdown U87 glioma cells. Ukr Biochem J. 86:79–89. 2014.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang F, Zhang L, Zhang GL, Wang ZB, Cui
XS, Kim NH and Sun SC: WASH complex regulates Arp2/3 complex for
actin-based polar body extrusion in mouse oocytes. Sci Rep.
4:55962014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shah K and Bradbury NA: Lemur tyrosine
kinase 2, a novel target in prostate cancer therapy. Oncotarget.
6:14233–14246. 2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Sparano JA, Goldstein LJ, Childs BH, Shak
S, Brassard D, Badve S, Baehner FL, Bugarini R, Rowley S, Perez EA,
et al: Relationship between quantitative GRB7 RNA expression and
recurrence after adjuvant anthracycline chemotherapy in
triple-negative breast cancer. Clin Cancer Res. 17:7194–7203. 2011.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Xu QY, Gao Y, Liu Y, Yang WZ and Xu XY:
Identification of differential gene expression profiles of
radioresistant lung cancer cell line established by fractionated
ionizing radiation in vitro. Chin Med J (Engl). 121:1830–1837.
2008. View Article : Google Scholar
|
49
|
Kim IG, Kim SY, Kim HA, Kim JY, Lee JH,
Choi SI, Han JR, Kim KC and Cho EW: Disturbance of DKK1 level is
partly involved in survival of lung cancer cells via regulation of
ROMO1 and γ-radiation sensitivity. Biochem Biophys Res Commun.
443:49–55. 2014. View Article : Google Scholar
|
50
|
Roy SS, Ehrlich AM, Craigen WJ and
Hajnoczky G: VDAC2 is required for truncated BID-induced
mitochondrial apoptosis by recruiting BAK to the mitochondria. EMBO
Rep. 10:1341–1347. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Salim H, Zong D, Hååg P, Novak M, Mörk B,
Lewensohn R, Lundholm L and Viktorsson K: DKK1 is a potential novel
mediator of cisplatin-refractoriness in non-small cell lung cancer
cell lines. BMC Cancer. 15:6282015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Du C, Wang X, Zhang J, Liu X, Zhu J and
Liu Y: Paxillin is positively correlated with the
clinicopathological factors of colorectal cancer, and knockdown of
Paxillin improves sensitivity to cetux-imab in colorectal cancer
cells. Oncol Rep. 35:409–417. 2016. View Article : Google Scholar
|
53
|
Wu DW, Chen CY, Chu CL and Lee H: Paxillin
confers resistance to tyrosine kinase inhibitors in EGFR-mutant
lung cancers via modulating BIM and Mcl-1 protein stability.
Oncogene. 35:621–630. 2016. View Article : Google Scholar
|
54
|
Wu DW, Huang CC, Chang SW, Chen TH and Lee
H: Bcl-2 stabilization by paxillin confers 5-fluorouracil
resistance in colorectal cancer. Cell Death Differ. 22:779–789.
2015. View Article : Google Scholar :
|
55
|
Howe EN, Cochrane DR, Cittelly DM and
Richer JK: miR-200c targets a NF-κB up-regulated TrkB/NTF3
autocrine signaling loop to enhance anoikis sensitivity in triple
negative breast cancer. PLoS One. 7:e499872012. View Article : Google Scholar
|
56
|
Taniguchi T, Tischkowitz M, Ameziane N,
Hodgson SV, Mathew CG, Joenje H, Mok SC and D'Andrea AD: Disruption
of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian
tumors. Nat Med. 9:568–574. 2003. View
Article : Google Scholar : PubMed/NCBI
|
57
|
Helleman J, van Staveren IL, Dinjens WN,
van Kuijk PF, Ritstier K, Ewing PC, van der Burg ME, Stoter G and
Berns EM: Mismatch repair and treatment resistance in ovarian
cancer. BMC Cancer. 6:2012006. View Article : Google Scholar : PubMed/NCBI
|
58
|
Kawahara T, Ide H, Kashiwagi E, Patterson
JD, Inoue S, Shareef HK, Aljarah AK, Zheng Y, Baras AS and Miyamoto
H: Silodosin inhibits the growth of bladder cancer cells and
enhances the cytotoxic activity of cisplatin via ELK1 inactivation.
Am J Cancer Res. 5:2959–2968. 2015.PubMed/NCBI
|
59
|
Jung JG, Shih IM, Park JT, Gerry E, Kim
TH, Ayhan A, Handschuh K, Davidson B, Fader AN, Selleri L and Wang
TL: Ovarian cancer chemoresistance relies on the stem cell
reprogramming factor PBX1. Cancer Res. 76:6351–6361. 2016.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Yang C, Yin L, Zhou P, Liu X, Yang M, Yang
F, Jiang H and Ding K: Transcriptional regulation of IER5 in
response to radiation in HepG2. Cancer Gene Ther. 23:61–65. 2016.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Yu Y, Guo M, Wei Y, Yu S, Li H, Wang Y, Xu
X, Cui Y, Tian J, Liang L, et al: FoxO3a confers cetuximab
resistance in RAS wild-type metastatic colorectal cancer through
c-Myc. Oncotarget. 7:80888–80900. 2016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Sannigrahi MK, Singh V, Sharma R, Panda NK
and Khullar M: Role of autophagy in head and neck cancer and
therapeutic resistance. Oral Dis. 21:283–291. 2015. View Article : Google Scholar
|
63
|
Peitzsch C, Perrin R, Hill RP, Dubrovska A
and Kurth I: Hypoxia as a biomarker for radioresistant cancer stem
cells. Int J Radiat Biol. 90:636–652. 2014. View Article : Google Scholar : PubMed/NCBI
|
64
|
Bivin WW, Yergiyev O, Bunker ML, Silverman
JF and Krishnamurti U: GRB7 expression and correlation with HER2
amplification in invasive breast carcinoma. Appl Immunohistochem
Mol Morphol. 25:553–558. 2017. View Article : Google Scholar
|
65
|
Nencioni A, Cea M, Garuti A, Passalacqua
M, Raffaghello L, Soncini D, Moran E, Zoppoli G, Pistoia V, Patrone
F and Ballestrero A: Grb7 upregulation is a molecular adaptation to
HER2 signaling inhibition due to removal of Akt-mediated gene
repression. PLoS One. 5:e90242010. View Article : Google Scholar : PubMed/NCBI
|