1
|
Suzuki K, Takeuchi O, Suzuki Y and
Kitagawa Y: Mechanisms of metformin's anti-tumor activity against
gemcitabine-resistant pancreatic adenocarcinoma. Int J Oncol.
54:764–772. 2019.
|
2
|
Wei DM, Jiang MT, Lin P, Yang H, Dang YW,
Yu Q, Liao DY, Luo DZ and Chen G: Potential ceRNA networks involved
in autophagy suppression of pancreatic cancer caused by chloroquine
diphosphate: A study based on differentially-expressed circRNAs,
lncRNAs, miRNAs and mRNAs. Int J Oncol. 54:600–626. 2019.
|
3
|
Lin QJ, Yang F, Jin C and Fu DL: Current
status and progress of pancreatic cancer in China. World J
Gastroenterol. 21:7988–8003. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Son J, Lyssiotis CA, Ying H, Wang X, Hua
S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, et
al: Glutamine supports pancreatic cancer growth through a
KRAS-regulated metabolic pathway. Nature. 496:101–105. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Huang Q, Tan Y, Yin P, Ye G, Gao P, Lu X,
Wang H and Xu G: Metabolic characterization of hepatocellular
carcinoma using nontargeted tissue metabolomics. Cancer Res.
73:4992–5002. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Keum N, Yuan C, Nishihara R, Zoltick E,
Hamada T, Martinez Fernandez A, Zhang X, Hanyuda A, Liu L, Kosumi
K, et al: Dietary glycemic and insulin scores and colorectal cancer
survival by tumor molecular biomarkers. Int J Cancer.
140:2648–2656. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
McDonnell SR, Hwang SR, Rolland D,
Murga-Zamalloa C, Basrur V, Conlon KP, Fermin D, Wolfe T, Raskind
A, Ruan C, et al: Integrated phosphoproteomic and metabolomic
profiling reveals NPM-ALK-mediated phosphorylation of PKM2 and
metabolic reprogramming in anaplastic large cell lymphoma. Blood.
122:958–968. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Vernieri C, Pusceddu S, Fucà G, Indelicato
P, Centonze G, Castagnoli L, Ferrari E, Ajazi A, Pupa S, Casola S,
et al: Impact of systemic and tumor lipid metabolism on everolimus
efficacy in advanced pancreatic neuroendocrine tumors (pNETs). Int
J Cancer. 144:1704–1712. 2019. View Article : Google Scholar
|
9
|
Cacciatore S, Hu X, Viertler C, Kap M,
Bernhardt GA, Mischinger HJ, Riegman P, Zatloukal K, Luchinat C and
Turano P: Effects of intra- and post-operative ischemia on the
metabolic profile of clinical liver tissue specimens monitored by
NMR. J Proteome Res. 12:5723–5729. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Priolo C, Pyne S, Rose J, Regan ER, Zadra
G, Photopoulos C, Cacciatore S, Schultz D, Scaglia N, McDunn J, et
al: AKT1 and MYC induce distinctive metabolic fingerprints in human
prostate cancer. Cancer Res. 74:7198–7204. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu L, Tabung FK, Zhang XH, Nowak JA, Qian
ZR, Hamada T, Nevo D, Bullman S, Mima K, Kosumi K, et al: Diets
that promote colon inflammation associate with risk of colorectal
carcinomas that contain fusobacterium nucleatum. Clin Gastroenterol
Hepatol. 16:1622–1631.e3. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ruan J, Zheng H, Rong X, Zhang J, Fang W,
Zhao P and Luo R: Overexpression of cathepsin B in hepatocellular
carcinomas predicts poor prognosis of HCC patients. Mol Cancer.
15:172016. View Article : Google Scholar
|
13
|
Cors JF, Kashyap A, Fomitcheva Khartchenko
A, Schraml P and Kaigala GV: Tissue lithography: Microscale
dewaxing to enable retrospective studies on formalin-fixed
paraffin-embedded (FFPE) tissue sections. PLoS One.
12:e01766912017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mayer A, Schmidt M, Seeger A, Serras AF,
Vaupel P and Schmidberger H: GLUT-1 expression is largely unrelated
to both hypoxia and the warburg phenotype in squamous cell
carcinomas of the vulva. BMC Cancer. 14:7602014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Poste G: Bring on the biomarkers. Nature.
469:156–157. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fang F, He X, Deng H, Chen Q, Lu J, Spraul
M and Yu Y: Discrimination of metabolic profiles of pancreatic
cancer from chronic pancreatitis by high-resolution magic angle
spinning 1H nuclear magnetic resonance and principal components
analysis. Cancer Sci. 98:1678–1682. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kaplan O, Kushnir T, Askenazy N, Knubovets
T and Navon G: Role of nuclear magnetic resonance spectroscopy
(MRS) in cancer diagnosis and treatment: 31P, 23Na, and 1H MRS
studies of three models of pancreatic cancer. Cancer Res.
57:1452–1459. 1997.PubMed/NCBI
|
19
|
Buck A, Ly A, Balluff B, Sun N, Gorzolka
K, Feuchtinger A, Janssen KP, Kuppen PJ, van de Velde CJ, Weirich
G, et al: High-resolution MALDI-FT-ICR MS imaging for the analysis
of metabolites from formalin-fixed, paraffin-embedded clinical
tissue samples. J Pathol. 237:123–132. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang H, Wang L, Zhang H, Deng P, Chen J,
Zhou B, Hu J, Zou J, Lu W, Xiang P, et al: H-1 NMR-based metabolic
profiling of human rectal cancer tissue. Mol Cancer. 12:1212013.
View Article : Google Scholar
|
21
|
Kelly AD, Breitkopf SB, Yuan M, Goldsmith
J, Spentzos D and Asara JM: Metabolomic profiling from
formalin-fixed, paraffin-embedded tumor tissue using targeted
LC/MS/MS: Application in sarcoma. PLoS One. 6:e253572011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Aimetti M, Cacciatore S, Graziano A and
Tenori L: Metabonomic analysis of saliva reveals generalized
chronic periodontitis signature. Metabolomics. 8:465–474. 2012.
View Article : Google Scholar
|
23
|
Lim J, Kim Y, Lee W, Kim M, Lee EJ, Kang
CS and Han K: Fresh-frozen, optimal cutting temperature (OCT)
compound-embedded bone marrow aspirates: A reliable resource for
morphological, immunohistochemical and molecular examinations. Int
J Laboratory Hematol. 32:e34–39. 2010. View Article : Google Scholar
|
24
|
Liu M, Zhao SQ, Yang L, Li X, Song X,
Zheng Y, Fan J and Shi H: A direct immunohistochemistry (IHC)
method improves the intraoperative diagnosis of breast papillary
lesions including breast cancer. Discov Med. 28:29–37.
2019.PubMed/NCBI
|
25
|
Evans AM, DeHaven CD, Barrett T, Mitchell
M and Milgram E: Integrated, nontargeted ultrahigh performance
liquid chromatography/electrospray ionization tandem mass
spectrometry platform for the identification and relative
quantification of the small-molecule complement of biological
systems. Anal Chem. 81:6656–6667. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yuan M, Breitkopf SB, Yang X and Asara JM:
A positive/negative ion-switching, targeted mass spectrometry-based
metabolomics platform for bodily fluids, cells, and fresh and fixed
tissue. Nat Protoc. 7:872–881. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cacciatore S, Zadra G, Bango C, Penney KL,
Tyekucheva S, Yanes O and Loda M: Metabolic profiling in
formalin-fixed and paraffin-embedded prostate cancer tissues. Mol
Cancer Res. 15:439–447. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li CF, Tsai HH, Ko CY, Pan YC, Yen CJ, Lai
HY, Yuh CH, Wu WC and Wang JM: HMDB and 5-AzadC combination
reverses tumor suppressor CCAAT/enhancer-binding protein delta to
strengthen the death of liver cancer cells. Mol Cancer Ther.
14:2623–2633. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wishart DS, Feunang YD, Marcu A, Guo AC,
Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, et al:
HMDB 4.0: The human metabolome database for 2018. Nucleic Acids
Res. 46:D608–D617. 2018. View Article : Google Scholar :
|
30
|
Xia J, Psychogios N, Young N and Wishart
DS: MetaboAnalyst: A web server for metabolomic data analysis and
interpretation. Nucleic Acids Res. 37:W652–W660. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xia J and Wishart DS: Web-based inference
of biological patterns, functions and pathways from metabolomic
data using MetaboAnalyst. Nat Protoc. 6:743–760. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Villanueva RAM and Chen ZJ: ggplot2:
Elegant graphics for data analysis (2nd ed.). Meas
Interdisciplinary Res Perspect. 17:160–167. 2019. View Article : Google Scholar
|
33
|
Benjamini Y and Hocherg Y: Controlling the
false discovery rate: A practical and powerful approach to multiple
testing. J Royal Stat Soc Series B (Methodological). 57:289–300.
1995. View Article : Google Scholar
|
34
|
Gao J, Tarcea VG, Karnovsky A, Mirel BR,
Weymouth TE, Beecher CW, Cavalcoli JD, Athey BD, Omenn GS, Burant
CF and Jagadish HV: Metscape: A Cytoscape plug-in for visualizing
and interpreting metabolomic data in the context of human metabolic
networks. Bioinformatics. 26:971–973. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Putluri N, Shojaie A, Vasu VT, Nalluri S,
Vareed SK, Putluri V, Vivekanandan-Giri A, Byun J, Pennathur S,
Sana TR, et al: Metabolomic profiling reveals a role for androgen
in activating amino acid metabolism and methylation in prostate
cancer cells. PLoS One. 6:e214172011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wojakowska A, Chekan M, Marczak Ł,
Polanski K, Lange D, Pietrowska M and Widlak P: Detection of
metabolites discriminating subtypes of thyroid cancer: Molecular
profiling of FFPE samples using the GC/MS approach. Mol Cell
Endocrinol. 417:149–157. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mayers JR, Wu C, Clish CB, Kraft P,
Torrence ME, Fiske BP, Yuan C, Bao Y, Townsend MK, Tworoger SS, et
al: Elevation of circulating branched-chain amino acids is an early
event in human pancreatic adenocarcinoma development. Nat Med.
20:1193–1198. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sadanandam A, Wullschleger S, Lyssiotis
CA, Grötzinger C, Barbi S, Bersani S, Körner J, Wafy I, Mafficini
A, Lawlor RT, et al: A cross-species analysis in pancreatic
neuroendocrine tumors reveals molecular subtypes with distinctive
clinical, metastatic, developmental, and metabolic characteristics.
Cancer Discov. 5:1296–1313. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nie S, Lo A, Wu J, Zhu J, Tan Z, Simeone
DM, Anderson MA, Shedden KA, Ruffin MT and Lubman DM: Glycoprotein
biomarker panel for pancreatic cancer discovered by quantitative
proteomics analysis. J Proteome Res. 13:1873–1884. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wojakowska A, Marczak Ł, Jelonek K,
Polanski K, Widlak P and Pietrowska M: An optimized method of
metabolite extraction from formalin-fixed paraffin-embedded tissue
for GC/MS analysis. PLoS One. 10:e01369022015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gika H, Virgiliou C, Theodoridis G, Plumb
RS and Wilson ID: Untargeted LC/MS-based metabolic phenotyping
(metabo-nomics/metabolomics): The state of the art. J Chromatogr B
Analyt Technol Biomed Life Sci. 1117:136–147. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kaushik AK, Vareed SK, Basu S, Putluri V,
Putluri N, Panzitt K, Brennan CA, Chinnaiyan AM, Vergara IA, Erho
N, et al: Metabolomic profiling identifies biochemical pathways
associated with castration-resistant prostate cancer. J Proteome
Res. 13:1088–1100. 2014. View Article : Google Scholar
|
44
|
DeMarshall C, Goldwaser EL, Sarkar A,
Godsey GA, Acharya NK, Thayasivam U, Belinka BA and Nagele RG:
Autoantibodies as diagnostic biomarkers for the detection and
subtyping of multiple sclerosis. J Neuroimmunol. 309:51–57. 2017.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Yokom DW, Stewart J, Alimohamed NS,
Winquist E, Berry S, Hubay S, Lattouf JB, Leonard H, Girolametto C,
Saad F and Sridhar SS: Prognostic and predictive clinical factors
in patients with metastatic castration-resistant prostate cancer
treated with cabazitaxel. Can Urol Assoc J. 12:E365–E372. 2018.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Moreno P, Jiménez-Jiménez C,
Garrido-Rodríguez M, Calderón-Santiago M, Molina S, Lara-Chica M,
Priego-Capote F, Salvatierra Á, Muñoz E and Calzado MA: Metabolomic
profiling of human lung tumor tissues-nucleotide metabolism as a
candidate for therapeutic interventions and biomarkers. Mol Oncol.
12:1778–1796. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang J, Pavlova NN and Thompson CB:
Cancer cell metabolism: The essential role of the nonessential
amino acid, glutamine. EMBO J. 36:1302–1315. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Koutsioumpa M, Hatziapostolou M,
Polytarchou C, Mahurkar-Joshi S and Iliopoulos D: H3K4me3 affects
glucose metabolism and lipid content in pancreatic cancer.
Gastroenterology. 152:S1152017. View Article : Google Scholar
|
49
|
Sunami Y, Rebelo A and Kleeff J: Lipid
metabolism and lipid droplets in pancreatic cancer and stellate
cells. Cancers (Basel). 10. pp. E32017, View Article : Google Scholar
|
50
|
Krishnamurthy RV, Suryawanshi YR and
Essani K: Nitrogen isotopes provide clues to amino acid metabolism
in human colorectal cancer cells. Sci Rep. 7:25622017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Jiao L, Maity S, Coarfa C, Rajapakshe K,
Chen L, Jin F, Putluri V, Tinker LF, Mo Q, Chen F, et al: A
prospective targeted serum metabolomics study of pancreatic cancer
in postmenopausal women. Cancer Prev Res (Phila). 12:237–246. 2019.
View Article : Google Scholar
|
52
|
Bogner-Strauss JG: N-acetylaspartate
metabolism outside the brain: Lipogenesis, histone acetylation, and
cancer. Front Endocrinol (Lausanne). 8:2402017. View Article : Google Scholar
|
53
|
Lou TF, Sethuraman D, Dospoy P, Srivastva
P, Kim HS, Kim J, Ma X, Chen PH, Huffman KE, Frink RE, et al:
Cancer-Specific Production of N-Acetylaspartate via NAT8L
Overexpression in Non-Small Cell Lung Cancer and Its Potential as a
Circulating Biomarker. Cancer Prev Res (Phila). 9:43–52. 2016.
View Article : Google Scholar
|
54
|
Wang M, Zou L, Liang J, Wang X, Zhang D,
Fang Y, Zhang J, Xiao F and Liu M: The urinary sarcosine/creatinine
ratio is a potential diagnostic and prognostic marker in prostate
cancer. Med Sci Monit. 24:3034–3041. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Lin HL, Chen CW, Lu CY, Sun LC, Shih YL,
Chuang JF, Huang YH, Sheen MC and Wang JY: High preoperative ratio
of blood urea nitrogen to creatinine increased mortality in
gastrointestinal cancer patients who developed postoperative
enteric fistulas. Kaohsiung J Med Sci. 28:418–422. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Weinstein SJ, Mackrain K,
Stolzenberg-Solomon RZ, Selhub J, Virtamo J and Albanes D: Serum
creatinine and prostate cancer risk in a prospective study. Cancer
Epidemiol Biomarkers Prev. 18:2643–2649. 2009. View Article : Google Scholar : PubMed/NCBI
|
57
|
Phang JM, Donald SP, Pandhare J and Liu Y:
The metabolism of proline, a stress substrate, modulates
carcinogenic pathways. Amino Acids. 35:681–690. 2008. View Article : Google Scholar : PubMed/NCBI
|
58
|
Eales KL, Hollinshead KE and Tennant DA:
Hypoxia and metabolic adaptation of cancer cells. Oncogenesis.
5:e1902016. View Article : Google Scholar : PubMed/NCBI
|
59
|
Tang L, Zeng J, Geng P, Fang C, Wang Y,
Sun M, Wang C, Wang J, Yin P, Hu C, et al: Global metabolic
profiling identifies a pivotal role of proline and hydroxyproline
metabolism in supporting hypoxic response in hepatocellular
carcinoma. Clin Cancer Res. 24:474–485. 2018. View Article : Google Scholar
|
60
|
Karigane D, Kobayashi H, Morikawa T,
Ootomo Y, Sakai M, Nagamatsu G, Kubota Y, Goda N, Matsumoto M,
Nishimura EK, et al: p38α activates purine metabolism to initiate
hematopoietic stem/progenitor cell cycling in response to stress.
Cell Stem Cell. 19:192–204. 2016. View Article : Google Scholar : PubMed/NCBI
|
61
|
Matsuyama M, Wakui M, Monnai M, Mizushima
T, Nishime C, Kawai K, Ohmura M, Suemizu H, Hishiki T, Suematsu M,
et al: Reduced CD73 expression and its association with altered
purine nucleotide metabolism in colorectal cancer cells robustly
causing liver metastases. Oncol Lett. 1:431–436. 2010. View Article : Google Scholar : PubMed/NCBI
|
62
|
El Kouni MH: Pyrimidine metabolism in
schistosomes: A comparison with other parasites and the search for
potential chemotherapeutic targets. Comp Biochem Physiol B Biochem
Mol Biol. 213:55–80. 2017. View Article : Google Scholar : PubMed/NCBI
|
63
|
Ser Z, Gao X, Johnson C, Mehrmohamadi M,
Liu X, Li S and Locasale JW: Targeting one carbon metabolism with
an antime-tabolite disrupts pyrimidine homeostasis and induces
nucleotide overflow. Cell Rep. 15:2367–2376. 2016. View Article : Google Scholar : PubMed/NCBI
|