1
|
McIntyre A and Ganti AK: Lung cancer-A
global perspective. J Surg Oncol. 115:550–554. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Miller KD, Siegel RL, Lin CC, Mariotto AB,
Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer
treatment and survivorship statistics, 2016. CA Cancer J Clin.
66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tanaka F and Yoneda K: Adjuvant therapy
following surgery in non-small cell lung cancer (NSCLC). Surg
Today. 46:25–37. 2016. View Article : Google Scholar
|
5
|
Du W, Stauffer ME and Eichman BF:
Structural biology of replication initiation factor Mcm10. Subcell
Biochem. 62:197–216. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thu YM and Bielinsky AK: Enigmatic roles
of Mcm10 in DNA replication. Trends Biochem Sci. 38:184–194. 2013.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Dumas LB, Lussky JP, McFarland EJ and
Shampay J: New temperature-sensitive mutants of Saccharomyces
cerevisiae affecting DNA replication. Mol Gen Genet. 187:42–46.
1982. View Article : Google Scholar : PubMed/NCBI
|
8
|
Solomon NA, Wright MB, Chang S, Buckley
AM, Dumas LB and Gaber RF: Genetic and molecular analysis of DNA43
and DNA52: Two new cell-cycle genes in Saccharomyces cerevisiae.
Yeast. 8:273–289. 1992. View Article : Google Scholar : PubMed/NCBI
|
9
|
Merchant AM, Kawasaki Y, Chen Y, Lei M and
Tye BK: A lesion in the DNA replication initiation factor Mcm10
induces pausing of elongation forks through chromosomal replication
origins in Saccharomyces cerevisiae. Mol Cell Biol. 17:3261–3271.
1997. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wohlschlegel JA, Dhar SK, Prokhorova TA,
Dutta A and Walter JC: Xenopus Mcm10 binds to origins of DNA
replication after Mcm2-7 and stimulates origin binding of Cdc45.
Mol Cell. 9:233–240. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jares P and Blow JJ: Xenopus cdc7 function
is dependent on licensing but not on XORC, XCdc6, or CDK activity
and is required for XCdc45 loading. Genes Dev. 14:1528–1540.
2000.PubMed/NCBI
|
12
|
Bochman ML and Schwacha A: The Mcm
complex: Unwinding the mechanism of a replicative helicase.
Microbiol Mol Biol Rev. 73:652–683. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gambus A, van Deursen F, Polychronopoulos
D, Foltman M, Jones RC, Edmondson RD, Calzada A and Labib K: A key
role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase
alpha within the eukaryotic replisome. EMBO J. 28:2992–3004. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK,
Wohlschlegel JA, Nutt LK, Kornbluth S and Dutta A: Mcm10 and
And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation
of DNA replication. Genes Dev. 21:2288–2299. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Thu YM and Bielinsky AK: MCM10: One tool
for all-Integrity, maintenance and damage control. Semin Cell Dev
Biol. 30:121–130. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Paulsen RD, Soni DV, Wollman R, Hahn AT,
Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero
DE, et al: A genome-wide siRNA screen reveals diverse cellular
processes and pathways that mediate genome stability. Mol Cell.
35:228–239. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
García-Aragoncillo E, Carrillo J, Lalli E,
Agra N, Gómez-López G, Pestaña A and Alonso J: DAX1, a direct
target of EWS/FLI1 oncoprotein, is a principal regulator of
cell-cycle progression in Ewing's tumor cells. Oncogene.
27:6034–6043. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Senfter D, Erkan EP, Özer E, Jungwirth G,
Madlener S, Kool M, Ströbel T, Saydam N and Saydam O:
Overexpression of minichromosome maintenance protein 10 in
medulloblastoma and its clinical implications. Pediatr Blood
Cancer. 64:642017. View Article : Google Scholar
|
19
|
Hua C, Zhao G, Li Y and Bie L:
Minichromosome Maintenance (MCM) Family as potential diagnostic and
prognostic tumor markers for human gliomas. BMC Cancer. 14:5262014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Li WM, Huang CN, Ke HL, Li CC, Wei YC, Yeh
HC, Chang LL, Huang CH, Liang PI, Yeh BW, et al: MCM10
over-expression implicates adverse prognosis in urothelial
carcinoma. Oncotarget. 7:77777–77792. 2016.PubMed/NCBI
|
21
|
Rousseaux S, Debernardi A, Jacquiau B,
Vitte AL, Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon PY,
Lantuejoul S, Hainaut P, et al: Ectopic activation of germline and
placental genes identifies aggressive metastasis-prone lung
cancers. Sci Transl Med. 5:186ra662013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hou J, Aerts J, den Hamer B, van Ijcken W,
den Bakker M, Riegman P, van der Leest C, van der Spek P, Foekens
JA, Hoogsteden HC, et al: Gene expression-based classification of
non-small cell lung carcinomas and survival prediction. PLoS One.
5:e103122010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Okayama H, Kohno T, Ishii Y, Shimada Y,
Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S,
et al: Identification of genes upregulated in ALK-positive and
EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res.
72:100–111. 2012. View Article : Google Scholar
|
24
|
Bild AH, Yao G, Chang JT, Wang Q, Potti A,
Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, et al:
Oncogenic pathway signatures in human cancers as a guide to
targeted therapies. Nature. 439:353–357. 2006. View Article : Google Scholar
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar
|
26
|
Dutta A and Bell SP: Initiation of DNA
replication in eukaryotic cells. Annu Rev Cell Dev Biol.
13:293–332. 1997. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gonzalez MA, Tachibana KE, Laskey RA and
Coleman N: Control of DNA replication and its potential clinical
exploitation. Nat Rev Cancer. 5:135–141. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schrader C, Janssen D, Klapper W, Siebmann
JU, Meusers P, Brittinger G, Kneba M, Tiemann M and Parwaresch R:
Minichromosome maintenance protein 6, a proliferation marker
superior to Ki-67 and independent predictor of survival in patients
with mantle cell lymphoma. Br J Cancer. 93:939–945. 2005.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Murphy N, Ring M, Heffron CCBB, King B,
Killalea AG, Hughes C, Martin CM, McGuinness E, Sheils O and
O'Leary JJ: p16INK4A, CDC6, and MCM5: Predictive biomarkers in
cervical preinvasive neoplasia and cervical cancer. J Clin Pathol.
58:525–534. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Korkolopoulou P, Givalos N, Saetta A,
Goudopoulou A, Gakiopoulou H, Thymara I, Thomas-Tsagli E and
Patsouris E: Minichromosome maintenance proteins 2 and 5 expression
in muscle-invasive urothelial cancer: A multivariate survival study
including proliferation markers and cell cycle regulators. Hum
Pathol. 36:899–907. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jankowska-Konsur A, Kobierzycki C, Reich
A, Grzegrzolka J, Maj J and Dziegiel P: Expression of MCM-3 and
MCM-7 in Primary Cutaneous T-cell Lymphomas. Anticancer Res.
35:6017–6026. 2015.PubMed/NCBI
|
33
|
Zakaria SH, Farag HA and Khater DS:
Immunohistochemical Expression of MCM-2 in Oral Epithelial
Dysplasias. Appl Immunohistochem Mol Morphol. 26:509–513. 2018.
View Article : Google Scholar
|
34
|
Liu YZ, Wang BS, Jiang YY, Cao J, Hao JJ,
Zhang Y, Xu X, Cai Y and Wang MR: MCMs expression in lung cancer:
Implication of prognostic significance. J Cancer. 8:3641–3647.
2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Das M, Prasad SB, Yadav SS, Govardhan HB,
Pandey LK, Singh S, Pradhan S and Narayan G: Over expression of
minichro-mosome maintenance genes is clinically correlated to
cervical carcinogenesis. PLoS One. 8:e696072013. View Article : Google Scholar
|
36
|
Kaur M, Sharma A, Khan M, Kar A and Saxena
S: Mcm10 prote-olysis initiates before the onset of M-phase. BMC
Cell Biol. 11:842010. View Article : Google Scholar
|
37
|
Sivakumar S and Gorbsky GJ: Spatiotemporal
regulation of the anaphase-promoting complex in mitosis. Nat Rev
Mol Cell Biol. 16:82–94. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Park JH, Bang SW, Jeon Y, Kang S and Hwang
DS: Knockdown of human MCM10 exhibits delayed and incomplete
chromosome replication. Biochem Biophys Res Commun. 365:575–582.
2008. View Article : Google Scholar
|
39
|
Park JH, Bang SW, Kim SH and Hwang DS:
Knockdown of human MCM10 activates G2 checkpoint pathway. Biochem
Biophys Res Commun. 365:490–495. 2008. View Article : Google Scholar
|
40
|
Yoshida K and Inoue I: Expression of MCM10
and TopBP1 is regulated by cell proliferation and UV irradiation
via the E2F transcription factor. Oncogene. 23:6250–6260. 2004.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wotschofsky Z, Gummlich L, Liep J, Stephan
C, Kilic E, Jung K, Billaud JN and Meyer HA: Integrated microRNA
and mRNA Signature Associated with the Transition from the Locally
Confined to the Metastasized Clear Cell Renal Cell Carcinoma
Exemplified by miR-146-5p. PLoS One. 11:e01487462016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Fatoba ST, Tognetti S, Berto M, Leo E,
Mulvey CM, Godovac-Zimmermann J, Pommier Y and Okorokov AL: Human
SIRT1 regulates DNA binding and stability of the Mcm10 DNA
replication factor via deacetylation. Nucleic Acids Res.
41:4065–4079. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Koppen A, Ait-Aissa R, Koster J, van Sluis
PG, Ora I, Caron HN, Volckmann R, Versteeg R and Valentijn LJ:
Direct regulation of the minichromosome maintenance complex by MYCN
in neuro-blastoma. Eur J Cancer. 43:2413–2422. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Diehl JA: Cycling to cancer with cyclin
D1. Cancer Biol Ther. 1:226–231. 2002. View
Article : Google Scholar : PubMed/NCBI
|
45
|
Landi MT, Dracheva T, Rotunno M, Figueroa
JD, Liu H, Dasgupta A, Mann FE, Fukuoka J, Hames M, Bergen AW, et
al: Gene expression signature of cigarette smoking and its role in
lung adenocarcinoma development and survival. PLoS One.
3:e16512008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Stearman RS, Dwyer-Nield L, Zerbe L,
Blaine SA, Chan Z, Bunn PA Jr, Johnson GL, Hirsch FR, Merrick DT,
Franklin WA, et al: Analysis of orthologous gene expression between
human pulmonary adenocarcinoma and a carcinogen-induced murine
model. Am J Pathol. 167:1763–1775. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ,
Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH, et al: Selection
of DDX5 as a novel internal control for Q-RT-PCR from microarray
data using a block bootstrap re-sampling scheme. BMC Genomics.
8:1402007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wachi S, Yoneda K and Wu R:
Interactome-transcriptome analysis reveals the high centrality of
genes differentially expressed in lung cancer tissues.
Bioinformatics. 21:4205–4208. 2005. View Article : Google Scholar : PubMed/NCBI
|