Protein‑ and growth‑modulatory effects of carcinoma‑associated fibroblasts on breast cancer cells: Role of interleukin‑6
- Authors:
- Angela Dittmer
- Theresia Lange
- Benjamin Leyh
- Jürgen Dittmer
-
Affiliations: Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany - Published online on: November 22, 2019 https://doi.org/10.3892/ijo.2019.4918
- Pages: 258-272
-
Copyright: © Dittmer et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, McGale P, Pan HC, Taylor C, Wang YC, et al Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet. 378:771–784. 2011. View Article : Google Scholar : PubMed/NCBI | |
Prat A and Perou CM: Deconstructing the molecular portraits of breast cancer. Mol Oncol. 5:5–23. 2011. View Article : Google Scholar | |
Hudis CA: Trastuzumab - mechanism of action and use in clinical practice. N Engl J Med. 357:39–51. 2007. View Article : Google Scholar : PubMed/NCBI | |
Omarini C, Guaitoli G, Pipitone S, Moscetti L, Cortesi L, Cascinu S and Piacentini F: Neoadjuvant treatments in triple-negative breast cancer patients: Where we are now and where we are going. Cancer Manag Res. 10:91–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, Rees M, Ramaswamy A, Muenst S, Soysal SD, et al: A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 177:1330–1345.e18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hong D, Fritz AJ, Zaidi SK, van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL and Stein GS: Epithelial-to-mesenchymal transition and cancer stem cells contribute to breast cancer heterogeneity. J Cell Physiol. 233:9136–9144. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dittmer J: Breast cancer stem cells: Features, key drivers and treatment options. Semin. Cancer Biol. 53:59–74. 2018. View Article : Google Scholar | |
Bailey TA, Luan H, Clubb RJ, Naramura M, Band V, Raja SM and Band H: Mechanisms of Trastuzumab resistance in ErbB2-driven breast cancer and newer opportunities to overcome therapy resistance. J Carcinog. 10:282011. View Article : Google Scholar : PubMed/NCBI | |
Musgrove EA and Sutherland RL: Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 9:631–643. 2009. View Article : Google Scholar : PubMed/NCBI | |
Osborne CK and Schiff R: Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 62:233–247. 2011. View Article : Google Scholar | |
Dittmer J and Leyh B: The impact of tumor stroma on drug response in breast cancer. Semin Cancer Biol. 31:3–15. 2015. View Article : Google Scholar | |
Leyh B, Dittmer A, Lange T, Martens JW and Dittmer J: Stromal cells promote anti-estrogen resistance of breast cancer cells through an insulin-like growth factor binding protein 5 (IGFBP5)/B-cell leukemia/lymphoma 3 (Bcl-3) axis. Oncotarget. 6:39307–39328. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pratt MA, Bishop TE, White D, Yasvinski G, Ménard M, Niu MY and Clarke R: Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells: Roles in growth and hormone independence. Mol Cell Biol. 23:6887–6900. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Cao X, Sun X, Lei R, Chen P, Zhao Y, Jiang Y, Yin J, Chen R, Ye D, et al: Bcl-3 regulates TGFβ signaling by stabi-lizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis. 7:e25082016. View Article : Google Scholar | |
Schuster M, Annemann M, Plaza-Sirvent C and Schmitz I: Atypical IκB proteins - nuclear modulators of NF-κB signaling. Cell Commun Signal. 11:232013. View Article : Google Scholar | |
Sas L, Lardon F, Vermeulen PB, Hauspy J, Van Dam P, Pauwels P, Dirix LY and Van Laere SJ: The interaction between ER and NFκB in resistance to endocrine therapy. Breast Cancer Res. 14:2122012. View Article : Google Scholar | |
Wang VY, Li Y, Kim D, Zhong X, Du Q, Ghassemian M and Ghosh G: Bcl3 Phosphorylation by Akt, Erk2, and IKK is required for its transcriptional activity. Mol Cell. 67:484–497.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baxter RC: IGF binding proteins in cancer: Mechanistic and clinical insights. Nat Rev Cancer. 14:329–341. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mita K, Zhang Z, Ando Y, Toyama T, Hamaguchi M, Kobayashi S, Hayashi S, Fujii Y, Iwase H and Yamashita H: Prognostic significance of insulin-like growth factor binding protein (IGFBP)-4 and IGFBP-5 expression in breast cancer. Jpn J Clin Oncol. 37:575–582. 2007. View Article : Google Scholar : PubMed/NCBI | |
Becker MA, Hou X, Harrington SC, Weroha SJ, Gonzalez SE, Jacob KA, Carboni JM, Gottardis MM and Haluska P: IGFBP ratio confers resistance to IGF targeting and correlates with increased invasion and poor outcome in breast tumors. Clin Cancer Res. 18:1808–1817. 2012. View Article : Google Scholar : PubMed/NCBI | |
West NR: Coordination of Immune-Stroma Crosstalk by IL-6 Family Cytokines. Front Immunol. 10:10932019. View Article : Google Scholar : PubMed/NCBI | |
Boulanger MJ, Chow DC, Brevnova EE and Garcia KC: Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science. 300:2101–2104. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schaper F and Rose-John S: Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 26:475–487. 2015. View Article : Google Scholar : PubMed/NCBI | |
Avalle L, Pensa S, Regis G, Novelli F and Poli V: STAT1 and STAT3 in tumorigenesis: A matter of balance. JAK-STAT. 1:65–72. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, et al: IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 15:103–113. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lacina L, Brábek J, Král V, Kodet O and Smetana K Jr: Interleukin-6: A molecule with complex biological impact in cancer. Histol Histopathol. 34:125–136. 2019. | |
Hodge DR, Hurt EM and Farrar WL: The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 41:2502–2512. 2005. View Article : Google Scholar : PubMed/NCBI | |
Morrow RJ, Etemadi N, Yeo B and Ernst M: Challenging a Misnomer? The Role of Inflammatory Pathways in Inflammatory Breast Cancer. Mediators Inflamm. 2017:47548272017. View Article : Google Scholar : PubMed/NCBI | |
Ghandadi M and Sahebkar A: Interleukin-6: A Critical Cytokine in Cancer Multidrug Resistance. Curr Pharm Des. 22:518–526. 2016. View Article : Google Scholar | |
Kim SY, Kang JW, Song X, Kim BK, Yoo YD, Kwon YT and Lee YJ: Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal. 25:961–969. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, Oberyszyn TM and Hall BM: Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 28:2940–2947. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yadav A, Kumar B, Datta J, Teknos TN and Kumar P: IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res. 9:1658–1667. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brooks MD, Burness ML and Wicha MS: Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer. Cell Stem Cell. 17:260–271. 2015. View Article : Google Scholar : PubMed/NCBI | |
Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S, Quraishi AA, Tawakkol N, D'Angelo R, Paulson AK, et al: Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 47:570–584. 2012. View Article : Google Scholar : PubMed/NCBI | |
Saha S, Mukherjee S, Khan P, Kajal K, Mazumdar M, Manna A, Mukherjee S, De S, Jana D, Sarkar DK, et al: Aspirin Suppresses the Acquisition of Chemoresistance in Breast Cancer by Disrupting an NFκB-IL6 Signaling Axis Responsible for the Generation of Cancer Stem Cells. Cancer Res. 76:2000–2012. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, et al: Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 71:614–624. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dittmer J: Mechanisms governing metastatic dormancy in breast cancer. Semin Cancer Biol. 44:72–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang GJ and Adachi I: Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res. 19(2B): 1427–1432. 1999.PubMed/NCBI | |
Casneuf T, Axel AE, King P, Alvarez JD, Werbeck JL, Verhulst T, Verstraeten K, Hall BM and Sasser AK: Interleukin-6 is a potential therapeutic target in interleukin-6 dependent, estrogen receptor-a-positive breast cancer. Breast Cancer (Dove Med Press). 8:13–27. 2016. | |
Zhang W, Guo J, Li S, Ma T, Xu D, Han C, Liu F, Yu W and Kong L: Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Sci Rep. 7:463522017. View Article : Google Scholar : PubMed/NCBI | |
Dittmer A and Dittmer J: Long-term exposure to carcinoma-associated fibroblasts makes breast cancer cells addictive to integrin β1. Oncotarget. 9:22079–22094. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dittmer A and Dittmer J: Beta-actin is not a reliable loading control in Western blot analysis. Electrophoresis. 27:2844–2845. 2006. View Article : Google Scholar : PubMed/NCBI | |
Moritz CP: Tubulin or Not Tubulin: Heading Toward Total Protein Staining as Loading Control in Western Blots. Proteomics. 17:172017. View Article : Google Scholar | |
Dittmer A, Schunke D and Dittmer J: PTHrP promotes homotypic aggregation of breast cancer cells in three-dimensional cultures. Cancer Lett. 260:56–61. 2008. View Article : Google Scholar | |
Oerlecke I, Bauer E, Dittmer A, Leyh B and Dittmer J: Cyclic AMP enhances TGFβ responses of breast cancer cells by upregulating TGFβ receptor I expression. PLoS One. 8:e542612013. View Article : Google Scholar | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar | |
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brocke-Heidrich K, Ge B, Cvijic H, Pfeifer G, Löffler D, Henze C, McKeithan TW and Horn F: BCL3 is induced by IL-6 via Stat3 binding to intronic enhancer HS4 and represses its own transcription. Oncogene. 25:7297–7304. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Jiang Y, Hou Y, Hu Y, Cao X, Tao Y, Xu C, Liu S, Wang S, Wang L, et al: The IκB family member Bcl-3 stabilizes c-Myc in colorectal cancer. J Mol Cell Biol. 5:280–282. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bretones G, Delgado MD and León J: Myc and cell cycle control. Biochim Biophys Acta. 1849:506–516. 2015. View Article : Google Scholar | |
Massoumi R, Chmielarska K, Hennecke K, Pfeifer A and Fässler R: Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell. 125:665–677. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, Joffé EB and Simian M: The tumor microenvironment modulates tamoxifen resistance in breast cancer: A role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Res Treat. 133:459–471. 2012. View Article : Google Scholar | |
Sánchez-Pérez Y, Chirino YI, Osornio-Vargas AR, Herrera LA, Morales-Bárcenas R, López-Saavedra A, González-Ramírez I, Miranda J and García-Cuellar CM: Cytoplasmic p21(CIP1/WAF1), ERK1/2 activation, and cytoskeletal remodeling are associated with the senescence-like phenotype after airborne particulate matter (PM(10)) exposure in lung cells. Toxicol Lett. 225:12–19. 2014. View Article : Google Scholar | |
Yousefi B, Rahmati M and Ahmadi Y: The roles of p53R2 in cancer progression based on the new function of mutant p53 and cytoplasmic p21. Life Sci. 99:14–17. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chiu JJ, Sgagias MK and Cowan KH: Interleukin 6 acts as a paracrine growth factor in human mammary carcinoma cell lines. Clin Cancer Res. 2:215–221. 1996.PubMed/NCBI | |
Kathawala RJ, Gupta P, Ashby CRJ Jr and Chen ZS: The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist Updat. 18:1–17. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ and Wicha MS: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17:1253–1270. 2003. View Article : Google Scholar : PubMed/NCBI | |
DuFort CC, Paszek MJ and Weaver VM: Balancing forces: Architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 12:308–319. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dittmer A, Fuchs A, Oerlecke I, Leyh B, Kaiser S, Martens JW, Lützkendorf J, Müller L and Dittmer J: Mesenchymal stem cells and carcinoma-associated fibroblasts sensitize breast cancer cells in 3D cultures to kinase inhibitors. Int J Oncol. 39:689–696. 2011.PubMed/NCBI | |
Dittmer A, Hohlfeld K, Lützkendorf J, Müller LP and Dittmer J: Human mesenchymal stem cells induce E-cadherin degradation in breast carcinoma spheroids by activating ADAM10. Cell Mol Life Sci. 66:3053–3065. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE and Hall BM: Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J. 21:3763–3770. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bharti R, Dey G, Ojha PK, Rajput S, Jaganathan SK, Sen R and Mandal M: Diacerein-mediated inhibition of IL-6/IL-6R signaling induces apoptotic effects on breast cancer. Oncogene. 35:3965–3975. 2016. View Article : Google Scholar | |
Klinakis A, Szabolcs M, Chen G, Xuan S, Hibshoosh H and Efstratiadis A: Igf1r as a therapeutic target in a mouse model of basal-like breast cancer. Proc Natl Acad Sci USA. 106:2359–2364. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ward C, Meehan J, Mullen P, Supuran C, Dixon JM, Thomas JS, Winum JY, Lambin P, Dubois L, Pavathaneni NK, et al: Evaluation of carbonic anhydrase IX as a therapeutic target for inhibition of breast cancer invasion and metastasis using a series of in vitro breast cancer models. Oncotarget. 6:24856–24870. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen CR, Kang Y and Massagué J: Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA. 98:992–999. 2001. View Article : Google Scholar : PubMed/NCBI | |
Friedrich K, Dolznig H, Han X and Moriggl R: Steering of carcinoma progression by the YIN/YANG interaction of STAT1/STAT3. Biosci Trends. 11:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marconett CN, Singhal AK, Sundar SN and Firestone GL: Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol Cell Endocrinol. 363:74–84. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gaben AM, Sabbah M, Redeuilh G, Bedin M and Mester J: Ligand-free estrogen receptor activity complements IGF1R to induce the proliferation of the MCF-7 breast cancer cells. BMC Cancer. 12:2912012. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Lu Z, Deng Y, Wang W, He Q, Yan W and Wang A: Up-regulation of INSR/IGF1R by C-myc promotes TSCC tumorigenesis and metastasis through the NF-κB pathway. Biochim Biophys Acta Mol Basis Dis. 1864(5 Pt A): 1873–1882. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ansari MF, Idrees D, Hassan MI, Ahmad K, Avecilla F and Azam A: Design, synthesis and biological evaluation of novel pyridine-thiazolidinone derivatives as anticancer agents: Targeting human carbonic anhydrase IX. Eur J Med Chem. 144:544–556. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sedlakova O, Svastova E, Takacova M, Kopacek J, Pastorek J and Pastorekova S: Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol. 4:4002014. View Article : Google Scholar : PubMed/NCBI | |
Jung YJ, Isaacs JS, Lee S, Trepel J and Neckers L: IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 17:2115–2117. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhu X, Zhang K, Yin Y, Chen Y and Zhang T: Interleukin-6 contributes to chemoresistance in MDA-MB-231 cells via targeting HIF-1a. J Biochem Mol Toxicol. 32:e220392018. View Article : Google Scholar | |
Nass N, Dittmer A, Hellwig V, Lange T, Beyer JM, Leyh B, Ignatov A, Weiβenborn C, Kirkegaard T, Lykkesfeldt AE, et al: Expression of transmembrane protein 26 (TMEM26) in breast cancer and its association with drug response. Oncotarget. 7:38408–38426. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hamurcu Z, Kahraman N, Ashour A and Ozpolat B: FOXM1 transcriptionally regulates expression of integrin β1 in triple-negative breast cancer. Breast Cancer Res Treat. 163:485–493. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gache C, Berthois Y, Martin PM and Saez S: Positive regulation of normal and tumoral mammary epithelial cell proliferation by fibroblasts in coculture. In. Vitro Cell Dev Biol Anim. 34:347–351. 1998. View Article : Google Scholar | |
Chen L, Shulman LM and Revel M: IL-6 receptors and sensitivity to growth inhibition by IL-6 in clones of human breast carcinoma cells. J Biol Regul Homeost Agents. 5:125–136. 1991.PubMed/NCBI | |
Badache A and Hynes NE: Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells. Cancer Res. 61:383–391. 2001.PubMed/NCBI | |
Ikeda O, Sekine Y, Mizushima A, Nakasuji M, Miyasaka Y, Yamamoto C, Muromoto R, Nanbo A, Oritani K, Yoshimura A, Matsuda T, et al: Interactions of STAP-2 with Brk and STAT3 participate in cell growth of human breast cancer cells. J Biol Chem. 285:38093–38103. 2010. View Article : Google Scholar : PubMed/NCBI | |
Proietti C, Salatino M, Rosemblit C, Carnevale R, Pecci A, Kornblihtt AR, Molinolo AA, Frahm I, Charreau EH, Schillaci R, et al: Progestins induce transcriptional activation of signal transducer and activator of transcription 3 (Stat3) via a Jak- and Src-dependent mechanism in breast cancer cells. Mol Cell Biol. 25:4826–4840. 2005. View Article : Google Scholar : PubMed/NCBI | |
Segev DL, Ha TU, Tran TT, Kenneally M, Harkin P, Jung M, MacLaughlin DT, Donahoe PK and Maheswaran S: Mullerian inhibiting substance inhibits breast cancer cell growth through an NFkappa B-mediated pathway. J Biol Chem. 275:28371–28379. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ping B, He X, Xia W, Lee DF, Wei Y, Yu D, Mills G, Shi D and Hung MC: Cytoplasmic expression of p21CIP1/WAF1 is correlated with IKKβ overexpression in human breast cancers. Int J Oncol. 29:1103–1110. 2006.PubMed/NCBI | |
Neve RM, Sutterlüty H, Pullen N, Lane HA, Daly JM, Krek W and Hynes NE: Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells. Oncogene. 19:1647–1656. 2000. View Article : Google Scholar : PubMed/NCBI | |
Weigelt B, Lo AT, Park CC, Gray JW and Bissell MJ: HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D micro-environment. Breast Cancer Res Treat. 122:35–43. 2010. View Article : Google Scholar | |
Hugo HJ, Lebret S, Tomaskovic-Crook E, Ahmed N, Blick T, Newgreen DF, Thompson EW and Ackland ML: Contribution of Fibroblast and Mast Cell (Afferent) and Tumor (Efferent) IL-6 Effects within the Tumor Microenvironment. Cancer Microenviron. 5:83–93. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mao Y, Zhang Y, Qu Q, Zhao M, Lou Y, Liu J, Huang O, Chen X, Wu J and Shen K: Cancer-associated fibroblasts induce trastuzumab resistance in HER2 positive breast cancer cells. Mol Biosyst. 11:1029–1040. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gallo M, Frezzetti D, Roma C, Chicchinelli N, Barbieri A, Arra C, Scognamiglio G, Botti G, De Luca A and Normanno N: RANTES and IL-6 cooperate in inducing a more aggressive phenotype in breast cancer cells. Oncotarget. 9:17543–17553. 2018. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Murillo G, Chen D, Parihar AS and Mehta RG: Suppression of Breast Cancer Cell Proliferation by Selective Single-Domain Antibody for Intracellular STAT3. Breast Cancer (Auckl). 12:11782234177508582018. | |
Mosteiro L, Pantoja C, de Martino A and Serrano M: Senescence promotes in vivo reprogramming through p16INK4a and IL-6. Aging Cell. 17:172018. View Article : Google Scholar | |
Correia AL and Bissell MJ: The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat. 15:39–49. 2012. View Article : Google Scholar : PubMed/NCBI |