1
|
Tarp MA and Clausen H: Mucin-type
O-glycosylation and its potential use in drug and vaccine
development. Biochim Biophys Acta. 1780:546–563. 2008. View Article : Google Scholar
|
2
|
Gill DJ, Clausen H and Bard F: Location,
location, location: New insights into O-GalNAc protein
glycosylation. Trends Cell Biol. 21:149–158. 2011. View Article : Google Scholar
|
3
|
Schjoldager KT and Clausen H:
Site-specific protein O-glycosylation modulates proprotein
processing-deciphering specific functions of the large polypeptide
GalNAc-transferase gene family. Biochim Biophys Acta.
1820:2079–2094. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pinho SS and Reis CA: Glycosylation in
cancer: Mechanisms and clinical implications. Nat Rev Cancer.
15:540–555. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hakomori S: Glycosylation defining cancer
malignancy: New wine in an old bottle. Proc Natl Acad Sci USA.
99:10231–10233. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hussain MR, Hoessli DC and Fang M:
N-acetylgalact osaminyl-transferases in cancer. Oncotarget.
7:54067–54081. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Berois N, Mazal D, Ubillos L, Trajtenberg
F, Nicolas A, Sastre-Garau X, Magdelenat H and Osinaga E:
UDP-N-acetyl-D-galactosamine: Polypeptide
N-acetylgalactosaminyltransferase-6 as a new immunohistochemical
breast cancer marker. J Histochem Cytochem. 54:317–328. 2006.
View Article : Google Scholar
|
8
|
Freire T, Berois N, Sóñora C, Varangot M,
Barrios E and Osinaga E: UDP-N-acetyl-D-galactosamine:polypeptide
N-acetylgalactosaminyltransferase 6 (ppGalNAc-T6) mRNA as a
potential new marker for detection of bone marrow-disseminated
breast cancer cells. Int J Cancer. 119:1383–1388. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Patani N, Jiang W and Mokbel K: Prognostic
utility of glycosyltransferase expression in breast cancer. Cancer
Genomics Proteomics. 5:333–340. 2008.
|
10
|
Park JH, Nishidate T, Kijima K, Ohashi T,
Takegawa K, Fujikane T, Hirata K, Nakamura Y and Katagiri T:
Critical roles of mucin 1 glycosylation by transactivated
polypeptide N-acetylg alactosaminyltransferase 6 in mammary
carcinogenesis. Cancer Res. 70:2759–2769. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liesche F, Kölbl AC, Ilmer M, Hutter S,
Jeschke U and Andergassen U: Role of
N-acetylgalactosaminyltransferase 6 in early tumorigenesis and
formation of metastasis. Mol Med Rep. 13:4309–4314. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Lin TC, Chen ST, Huang MC, Huang J, Hsu
CL, Juan HF, Lin HH and Chen CH: GALNT6 expression enhances
aggressive phenotypes of ovarian cancer cells by regulating EGFR
activity. Oncotarget. 8:42588–42601. 2017.PubMed/NCBI
|
13
|
Sheta R, Bachvarova M, Plante M, Gregoire
J, Renaud MC, Sebastianelli A, Popa I and Bachvarov D: Altered
expression of different GalNAc-transferases is associated with
disease progression and poor prognosis in women with high-grade
serous ovarian cancer. Int J Oncol. 51:1887–1897. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kitada S, Yamada S, Kuma A, Ouchi S,
Tasaki T, Nabeshima A, Noguchi H, Wang KY, Shimajiri S, Nakano R,
et al: Polypeptide N-acetylgalactosaminyl transferase 3
independently predicts high-grade tumours and poor prognosis in
patients with renal cell carcinomas. Br J Cancer. 109:472–481.
2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li Z, Yamada S, Wu Y, Wang KY, Liu YP,
Uramoto H, Kohno K and Sasaguri Y: Polypeptide
N-acetylgalactosaminyltransferase-6 expression independently
predicts poor overall survival in patients with lung adenocarcinoma
after curative resection. Oncotarget. 7:54463–54473.
2016.PubMed/NCBI
|
16
|
Li Z, Yamada S, Inenaga S, Imamura T, Wu
Y, Wang KY, Shimajiri S, Nakano R, Izumi H, Kohno K and Sasaguri Y:
Polypeptide N-acetylgalactosaminyltransferase 6 expression in
pancreatic cancer is an independent prognostic factor indicating
better overall survival. Br J Cancer. 104:1882–1889. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Park JH, Katagiri T, Chung S, Kijima K and
Nakamura Y: Polypeptide N-acetylgalactosaminyltransferase 6
disrupts mammary acinar morphogenesis through O-glycosylation of
fibronectin. Neoplasia. 13:320–326. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tarhan YE, Kato T, Jang M, Haga Y, Ueda K,
Nakamura Y and Park JH: Morphological changes, cadherin switching,
and growth suppression in pancreatic cancer by GALNT6 knockdown.
Neoplasia. 18:265–272. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lin J, Chung S, Ueda K, Matsuda K,
Nakamura Y and Park JH: GALNT6 stabilizes GRP78 protein by
O-glycosylation and enhances its activity to suppress apoptosis
under stress condition. Neoplasia. 19:43–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Deng B, Tarhan YE, Ueda K, Ren L, Katagiri
T, Park JH and Nakamura Y: Critical role of estrogen receptor alpha
O-glycosylation by N-acetylgalactosaminyltransferase 6 (GALNT6) in
its nuclear localization in breast cancer cells. Neoplasia.
20:1038–1044. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Koths K, Taylor E, Halenbeck R, Casipit C
and Wang A: Cloning and characterization of a human Mac-2-binding
protein, a new member of the superfamily defined by the macrophage
scavenger receptor cysteine-rich domain. J Biol Chem.
268:14245–14249. 1993.PubMed/NCBI
|
22
|
Ullrich A, Sures I, D’Egidio M, Jallal B,
Powell TJ, Herbst R, Dreps A, Azam M, Rubinstein M, Natoli C, et
al: The secreted tumor-associated antigen 90K is a potent immune
stimulator. J Biol Chem. 269:18401–18407. 1994.PubMed/NCBI
|
23
|
Iacobelli S, Arnò E, D’Orazio A and
Coletti G: Detection of antigens recognized by a novel monoclonal
antibody in tissue and serum from patients with breast cancer.
Cancer Res. 46:3005–3010. 1986.PubMed/NCBI
|
24
|
Linsley PS, Horn D, Marquardt H, Brown JP,
Hellström I, Hellström KE, Ochs V and Tolentino E: Identification
of a novel serum protein secreted by lung carcinoma cells.
Biochemistry. 25:2978–2986. 1986. View Article : Google Scholar : PubMed/NCBI
|
25
|
Iacobelli S, Bucci I, D’Egidio M, Giuliani
C, Natoli C, Tinari N, Rubistein M and Schlessinger J: Purification
and characterization of a 90 kDa protein released from human tumors
and tumor cell lines. FEBS Lett. 319:59–65. 1993. View Article : Google Scholar : PubMed/NCBI
|
26
|
Iacobelli S, Sismondi P, Giai M, D’Egidio
M, Tinari N, Amatetti C, Di Stefano P and Natoli C: Prognostic
value of a novel circulating serum 90K antigen in breast cancer. Br
J Cancer. 69:172–176. 1994. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tinari N, Lattanzio R, Querzoli P, Natoli
C, Grassadonia A, Alberti S, Hubalek M, Reimer D, Nenci I, Bruzzi
P, et al: High expression of 90K (Mac-2 BP) is associated with poor
survival in node-negative breast cancer patients not receiving
adjuvant systemic therapies. Int J Cancer. 124:333–338. 2009.
View Article : Google Scholar
|
28
|
Fornarini B, D’Ambrosio C, Natoli C,
Tinari N, Silingardi V and Iacobelli S: Adhesion to 90K (Mac-2 BP)
as a mechanism for lymphoma drug resistance in vivo. Blood.
96:3282–3285. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Strizzi L, Muraro R, Vianale G, Natoli C,
Talone L, Catalano A, Mutti L, Tassi G and Procopio A: Expression
of glycoprotein 90K in human malignant pleural mesothelioma:
Correlation with patient survival. J Pathol. 197:218–223. 2002.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Marchetti A, Tinari N, Buttitta F, Chella
A, Angeletti CA, Sacco R, Mucilli F, Ullrich A and Iacobelli S:
Expression of 90K (Mac-2 BP) correlates with distant metastasis and
predicts survival in stage I non-small cell lung cancer patients.
Cancer Res. 62:2535–2539. 2002.PubMed/NCBI
|
31
|
Grassadonia A, Tinari N, Iurisci I,
Piccolo E, Cumashi A, Innominato P, D’Egidio M, Natoli C, Piantelli
M and Iacobelli S: 90K (Mac-2 BP) and galectins in tumor
progression and metastasis. Glycoconj J. 19:551–556. 2002.
View Article : Google Scholar
|
32
|
Grassadonia A, Tinari N, Natoli C, Yahalom
G and Iacobelli S: Circulating autoantibodies to LGALS3BP: A novel
biomarker for cancer. Dis Markers. 35:747–752. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fukawa T, Ono M, Matsuo T, Uehara H, Miki
T, Nakamura Y, Kanayama HO and Katagiri T: DDX31 regulates the
p53-HDM2 pathway and rRNA gene transcription through its
interaction with NPM1 in renal cell carcinoma. Cancer Res.
72:5867–5877. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hang HC, Yu C, Ten Hagen KG, Tian E,
Winans KA, Tabak LA and Bertozzi CR: Small molecule inhibitors of
mucin-type O-linked glycosylation from a uridine-based library.
Chem Biol. 11:337–345. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ono M, Shitashige M, Honda K, Isobe T,
Kuwabara H, Matsuzuki H, Hirohashi S and Yamada T: Label-free
quantitative proteomics using large peptide data sets generated by
nanoflow liquid chromatography and mass spectrometry. Mol Cell
Proteomics. 5:1338–1347. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hohenester E, Sasaki T and Timpl R:
Crystal structure of a scavenger receptor cysteine-rich domain
sheds light on an ancient superfamily. Nat Struct Biol. 6:228–232.
1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hellstern S, Sasaki T, Fauser C, Lustig A,
Timpl R and Engel J: Functional studies on recombinant domains of
Mac-2-binding protein. J Biol Chem. 277:15690–15696. 2002.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Sasaki T, Brakebusch C, Engel J and Timpl
R: Mac-2 binding protein is a cell-adhesive protein of the
extracellular matrix which self-assembles into ring-like structures
and binds beta1 integrins, collagens and fibronectin. EMBO J.
17:1606–1613. 1998. View Article : Google Scholar : PubMed/NCBI
|
39
|
Müller SA, Sasaki T, Bork P, Wolpensinger
B, Schulthess T, Timpl R, Engel A and Engel J: Domain organization
of Mac-2 binding protein and its oligomerization to linear and
ring-like structures. J Mol Biol. 291:801–813. 1999. View Article : Google Scholar : PubMed/NCBI
|
40
|
Stampolidis P, Ullrich A and Iacobelli S:
LGALS3BP, lectin galactoside-binding soluble 3 binding protein,
promotes oncogenic cellular events impeded by antibody
intervention. Oncogene. 34:39–52. 2015. View Article : Google Scholar
|
41
|
Fogeron ML, Müller H, Schade S, Dreher F,
Lehmann V, Kühnel A, Scholz AK, Kashofer K, Zerck A, Fauler B, et
al: LGALS3BP regulates centriole biogenesis and centrosome
hypertrophy in cancer cells. Nat Commun. 4:15312013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cancer Genome Atlas Network: Comprehensive
molecular portraits of human breast tumours. Nature. 490:61–70.
2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ciriello G, Gatza ML, Beck AH, Wilkerson
MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C, et
al: Comprehensive molecular portraits of invasive lobular breast
cancer. Cell. 163:506–519. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Györffy B, Lanczky A, Eklund AC, Denkert
C, Budczies J, Li Q and Szallasi Z: An online survival analysis
tool to rapidly assess the effect of 22,277 genes on breast cancer
prognosis using microarray data of 1,809 patients. Breast Cancer
Res Treat. 123:725–731. 2010. View Article : Google Scholar
|