1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
McAllister SS and Weinberg RA: The
tumour-induced systemic environment as a critical regulator of
cancer progression and metastasis. Nat Cell Biol. 16:717–727. 2014.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Malanchi I, Santamaria-Martínez A, Susanto
E, Peng H, Lehr HA, Delaloye JF and Huelsken J: Interactions
between cancer stem cells and their niche govern metastatic
colonization. Nature. 481:85–89. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Quail DF and Joyce JA: Microenvironmental
regulation of tumor progression and metastasis. Nat Med.
19:1423–1437. 2013. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Erler JT, Bennewith KL, Cox TR, Lang G,
Bird D, Koong A, Le QT and Giaccia AJ: Hypoxia-induced lysyl
oxidase is a critical mediator of bone marrow cell recruitment to
form the premetastatic niche. Cancer Cell. 15:35–44. 2009.
View Article : Google Scholar
|
6
|
Schmidt H, Bastholt L, Geertsen P,
Christensen IJ, Larsen S, Gehl J and von der Maase H: Elevated
neutrophil and monocyte counts in peripheral blood are associated
with poor survival in patients with metastatic melanoma: A
prognostic model. Br J Cancer. 93:273–278. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tibaldi C, Vasile E, Bernardini I,
Orlandini C, Andreuccetti M and Falcone A: Baseline elevated
leukocyte count in peripheral blood is associated with poor
survival in patients with advanced non-small cell lung cancer: A
prognostic model. J Cancer Res Clin Oncol. 134:1143–1149. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Schmidt H, Suciu S, Punt CJA, Gore M,
Kruit W, Patel P, Lienard D, von der Maase H and Eggermont AM:
Pretreatment levels of peripheral neutrophils and leukocytes as
independent predictors of overall survival in patients with
American Joint Committee on Cancer Stage IV Melanoma: Results of
the EORTC 18951 Biochemotherapy Trial. J Clin Oncol. 25:1562–1569.
2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Teramukai S, Kitano T, Kishida Y, Kawahara
M, Kubota K, Komuta K, Minato K, Mio T, Fujita Y, Yonei T, et al:
Pretreatment neutrophil count as an independent prognostic factor
in advanced non-small-cell lung cancer: An analysis of Japan
Multinational Trial Organisation LC00-03. Eur J Cancer.
45:1950–1958. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Halazun KJ, Aldoori A, Malik HZ,
Al-Mukhtar A, Prasad KR, Toogood GJ and Lodge JPA: Elevated
preoperative neutrophil to lymphocyte ratio predicts survival
following hepatic resection for colorectal liver metastases. Eur J
Surg Oncol. 34:55–60. 2008. View Article : Google Scholar
|
11
|
Walsh SR, Cook EJ, Goulder F, Justin TA
and Keeling NJ: Neutrophil-lymphocyte ratio as a prognostic factor
in colorectal cancer. J Surg Oncol. 91:181–184. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu H, Liu G, Bao Q, Sun W, Bao H, Bi L,
Wen W, Liu Y, Wang Z, Yin X, et al: The baseline ratio of
neutrophils to lymphocytes is associated with patient prognosis in
rectal carcinoma. J Gastrointest Cancer. 41:116–120. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim IY, You SH and Kim YW:
Neutrophil-lymphocyte ratio predicts pathologic tumor response and
survival after preoperative chemoradiation for rectal cancer. BMC
Surg. 14:942014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liao W, Zhang J, Zhu Q, Qin L, Yao W, Lei
B, Shi W, Yuan S, Tahir SA, Jin J, et al: Preoperative
neutrophil-to-lymphocyte ratio as a new prognostic marker in
hepatocellular carcinoma after curative resection. Transl Oncol.
7:248–255. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mishalian I, Bayuh R, Eruslanov E,
Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z
and Fridlender ZG: Neutrophils recruit regulatory T-cells into
tumors via secretion of CCL17 - A new mechanism of impaired
antitumor immunity. Int J Cancer. 135:1178–1186. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gordon-Weeks AN, Lim SY, Yuzhalin AE,
Jones K, Markelc B, Kim KJ, Buzzelli JN, Fokas E, Cao Y, Smart S,
et al: Neutrophils promote hepatic metastasis growth through
fibroblast growth factor 2-dependent angiogenesis in mice.
Hepatology. 65:1920–1935. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wculek SK and Malanchi I: Neutrophils
support lung colonization of metastasis-initiating breast cancer
cells. Nature. 528:413–417. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Brinkmann V, Reichard U, Goosmann C,
Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y and Zychlinsky A:
Neutrophil extracellular traps kill bacteria. Science.
303:1532–1535. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gupta AK, Hasler P, Holzgreve W, Gebhardt
S and Hahn S: Induction of neutrophil extracellular DNA lattices by
placental microparticles and IL-8 and their presence in
preeclampsia. Hum Immunol. 66:1146–1154. 2005. View Article : Google Scholar
|
20
|
Sur Chowdhury C, Giaglis S, Walker UA,
Buser A, Hahn S and Hasler P: Enhanced neutrophil extracellular
trap generation in rheumatoid arthritis: Analysis of underlying
signal transduction pathways and potential diagnostic utility.
Arthritis Res Ther. 16:R1222014. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Brill A, Fuchs TA, Savchenko AS, Thomas
GM, Martinod K, De Meyer SF, Bhandari AA and Wagner DD: Neutrophil
extracellular traps promote deep vein thrombosis in mice. J Thromb
Haemost. 10:136–144. 2012. View Article : Google Scholar :
|
22
|
Wada H, Matsumoto T, Aota T, Yamashita Y,
Suzuki K and Katayama N: Management of cancer-associated
disseminated intravascular coagulation: guidance from the SSC of
the ISTH: comment. J Thromb Haemost. 14:1314–1315. 2016.comment.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Demers M, Krause DS, Schatzberg D,
Martinod K, Voorhees JR, Fuchs TA, Scadden DT and Wagner DD:
Cancers predispose neutrophils to release extracellular DNA traps
that contribute to cancer-associated thrombosis. Proc Natl Acad Sci
USA. 109:13076–13081. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chrysanthopoulou A, Mitroulis I,
Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T, Sivridis
E, Koffa M, Giatromanolaki A, Boumpas DT, et al: Neutrophil
extracellular traps promote differentiation and function of
fibroblasts. J Pathol. 233:294–307. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Park J, Wysocki RW, Amoozgar Z, Maiorino
L, Fein MR, Jorns J, Schott AF, Kinugasa-Katayama Y, Lee Y, Won NH,
et al: Cancer cells induce metastasis-supporting neutrophil
extracellular DNA traps. Sci Transl Med. 8:361ra1382016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tohme S, Yazdani HO, Al-Khafaji AB, Chidi
AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H and Tsung A:
Neutrophil extracellular traps promote the development and
progression of liver metastases after surgical stress. Cancer Res.
76:1367–1380. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kozono S, Ohuchida K, Eguchi D, Ikenaga N,
Fujiwara K, Cui L, Mizumoto K and Tanaka M: Pirfenidone inhibits
pancreatic cancer desmoplasia by regulating stellate cells. Cancer
Res. 73:2345–2356. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mederacke I, Dapito DH, Affò S, Uchinami H
and Schwabe RF: High-yield and high-purity isolation of hepatic
stellate cells from normal and fibrotic mouse livers. Nat Protoc.
10:305–315. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Park J, Wysocki RW, Amoozgar Z, et al:
Cancer cells induce metastasis-supporting neutrophil extracellular
DNA traps. Sci Transl Med. 8:361ra1382016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ikenaga N, Ohuchida K, Mizumoto K, Cui L,
Kayashima T, Morimatsu K, Moriyama T, Nakata K, Fujita H and Tanaka
M: CD10+ pancreatic stellate cells enhance the progression of
pancreatic cancer. Gastroenterology. 139:1041–1051.
1051.e1–1051.e8. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Endo S, Nakata K, Ohuchida K, Takesue S,
Nakayama H, Abe T, Koikawa K, Okumura T, Sada M, Horioka K, et al:
Autophagy Is Required for Activation of Pancreatic Stellate Cells,
Associated With Pancreatic Cancer Progression and Promotes Growth
of Pancreatic Tumors in Mice. Gastroenterology. 152:1492–1506.e24.
2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
Relative Gene Expression Data Using Real-Time Quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
33
|
Najmeh S, Cools-Lartigue J, Rayes RF,
Gowing S, Vourtzoumis P, Bourdeau F, Giannias B, Berube J, Rousseau
S, Ferri LE, et al: Neutrophil extracellular traps sequester
circulating tumor cells via β1-integrin mediated interactions. Int
J Cancer. 140:2321–2330. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nielsen SR, Quaranta V, Linford A, Emeagi
P, Rainer C, Santos A, Ireland L, Sakai T, Sakai K, Kim YS, et al:
Macrophage-secreted granulin supports pancreatic cancer metastasis
by inducing liver fibrosis. Nat Cell Biol. 18:549–560. 2016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Costa-silva B, Aiello NM, Ocean AJ, Singh
S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, et
al: Pancreatic cancer exosomes initiate pre-metastatic niche
formation in the liver. Nat Cell Biol. 17:816–826. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Patutina O, Mironova N, Ryabchikova E,
Popova N, Nikolin V, Kaledin V, Vlassov V and Zenkova M: Inhibition
of metastasis development by daily administration of ultralow doses
of RNase A and DNase I. Biochimie. 93:689–696. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Salganik RI, Martynova RP, Matien ko NA
and Ronichevskaya GM: Effect of deoxyribonuclease on the course of
lymphatic leukaemia in AKR mice. Nature. 214:100–102. 1967.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Sugihara S, Yamamoto T, Tanaka H, Kambara
T, Hiraoka T and Miyauchi Y: Deoxyribonuclease treatment prevents
blood-borne liver metastasis of cutaneously transplanted tumour
cells in mice. Br J Cancer. 67:66–70. 1993. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cools-Lartigue J, Spicer J, McDonald B,
Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P and Ferri L:
Neutrophil extracellular traps sequester circulating tumor cells
and promote metastasis. J Clin Invest. 123:3446–3458. 2013.
View Article : Google Scholar :
|
40
|
O’Connell JT, Sugimoto H, Cooke VG,
MacDonald BA, Mehta AI, LeBleu VS, Dewar R, Rocha RM, Brentani RR,
Resnick MB, et al: VEGF-A and Tenascin-C produced by S100A4+
stromal cells are important for metastatic colonization. Proc Natl
Acad Sci USA. 108:16002–16007. 2011. View Article : Google Scholar
|
41
|
Conti J and Thomas G: The role of tumour
stroma in colorectal cancer invasion and metastasis. Cancers
(Basel). 3:2160–2168. 2011. View Article : Google Scholar
|
42
|
Sousa S, Brion R, Lintunen M, Kronqvist P,
Sandholm J, Mönkkönen J, Kellokumpu-Lehtinen PL, Lauttia S,
Tynninen O, Joensuu H, et al: Human breast cancer cells educate
macrophages toward the M2 activation status. Breast Cancer Res.
17:1012015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Penheiter AR, Erdogan S, Murphy SJ, Hart
SN, Lima JF, Rohakhtar FR, O’Brien DR, Bamlet WR, Wuertz RE, Smyrk
TC, et al: Transcriptomic and Immunohistochemical Profiling of
SLC6A14 in Pancreatic Ductal Adenocarcinoma. Biomed Res Int.
2015:5935722015. View Article : Google Scholar : PubMed/NCBI
|