1
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Perets R, Wyant GA, Muto KW, Bijron JG,
Poole BB, Chin KT, Chen JY, Ohman AW, Stepule CD, Kwak S, et al:
Transformation of the fallopian tube secretory epithelium leads to
high-grade serous ovarian cancer in brca; tp53; pten models. Cancer
Cell. 24:751–765. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang M, Ma H, Pan Y, Xiao W, Li J, Yu J
and He J: PAX2 and PAX8 reliably distinguishes ovarian serous
tumors from mucinous tumors. Appl Immunohistochem Mol Morphol.
23:280–287. 2015. View Article : Google Scholar
|
4
|
Song H, Kwan SY, Izaguirre DI, Zu Z, Tsang
YT, Tung CS, King ER, Mok SC, Gershenson DM and Wong KK: PAX2
expression in ovarian cancer. Int J Mol Sci. 14:6090–6105. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Alhujaily EM, Tang Y, Yao D, Carmona E,
Garson K and Vanderhyden BC: Divergent roles of PAX2 in the
Etiology and Progression of Ovarian Cancer. Cancer Prev Res.
8:1163–1173. 2015. View Article : Google Scholar
|
6
|
Maulbecker CC and Gruss P: The oncogenic
potential of Pax genes. EMBO J. 12:2361–2367. 1993. View Article : Google Scholar : PubMed/NCBI
|
7
|
Muratovska A, Zhou C, He S, Goodyer P and
Eccles MR: Paired-Box genes are frequently expressed in cancer and
often required for cancer cell survival. Oncogene. 22:7989–7997.
2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen EY, Mehra K, Mehrad M, Ning G, Miron
A, Mutter GL, Monte N, Quade BJ, McKeon FD, Yassin Y, et al:
Secretory cell outgrowth, PAX2 and serous carcinogenesis in the
Fallopian tube. J Pathol. 222:110–116. 2010.PubMed/NCBI
|
9
|
Robson EJ, He SJ and Eccles MR: A PANorama
of PAX genes in cancer and development. Nat Rev Cancer. 6:52–62.
2006. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang HS, Yan XB, Li XB, Fan L, Zhang YF,
Wu GH, Li M and Fang J: PAX2 Protein induces expression of cyclin
D1 through activating AP-1 protein and promotes proliferation of
colon cancer Cells. J Biol Chem. 287:44164–44172. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang LP, Shi XY, Zhao CY, Liu YZ and
Cheng P: RNA interference of pax2 inhibits growth of transplanted
human endometrial cancer cells in nude mice. Chin J Cancer.
30:400–406. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hueber PA, Iglesias D, Chu LL, Eccles M
and Goodyer P: In vivo validation of PAX2 as a target for renal
cancer therapy. Cancer Lett. 265:148–155. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Penzvalto Z, Lanczky A, Lenart J,
Meggyesházi N, Krenács T, Szoboszlai N, Denkert C, Pete I and
Győrffy B: MEK1 is associated with carboplatin resistance and is a
prognostic biomarker in epithelial ovarian cancer. BMC Cancer.
14:837. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gyorffy B, Lanczky A and Szallasi Z:
Implementing an online tool for genome-wide validation of
survival-associated biomarkers in ovarian-cancer using microarray
data from 1287 patients. Endocr-Relat Cancer. 19:197–208. 2012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Marín-García J: Mechanisms of bioenergy
production in mitochondria. Springer; Boston, MA: pp. 99–121.
2013
|
16
|
Nieman KM, Kenny HA, Penicka CV, Ladanyi
A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB,
Hotamisligil GS, et al: Adipocytes promote ovarian cancer
metastasis and provide energy for rapid tumor growth. Nat Med.
17:1498–1503. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kellenberger LD, Bruin JE, Greenaway J,
Campbell NE, Moorehead RA, Holloway AC and Petrik J: The role of
dysregulated glucose metabolism in epithelial ovarian cancer. J
Oncol. 2010:5143102010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lim HY, Ho QS, Low J, Choolani M and Wong
KP: Respiratory competent mitochondria in human ovarian and
peritoneal cancer. Mitochondrion. 11:437–443. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chivukula M, Dabbs DJ, O'Connor S and
Bhargava R: PAX 2: A novel Mullerian marker for serous papillary
carcinomas to differentiate from micropapillary breast carcinoma.
Int J Gynecol Pathol. 28:570–578. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Priebe A, Tan L, Wahl H, Kueck A, He G,
Kwok R, Opipari A and Liu JR: Glucose deprivation activates AMPK
and induces cell death through modulation of Akt in ovarian cancer
cells. Gynecol Oncol. 122:389–395. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Anderson AS, Roberts PC, Frisard MI,
McMillan RP, Brown TJ, Lawless MH, Hulver MW and Schmelz EM:
Metabolic changes during ovarian cancer progression as targets for
sphingosine treatment. Exp Cell Res. 319:1431–1442. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Fong MY, McDunn J and Kakar SS:
Identification of metabolites in the normal ovary and their
transformation in primary and metastatic ovarian cancer. PLoS One.
6:e199632011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ke C, Hou Y, Zhang H, Fan L, Ge T, Guo B,
Zhang F, Yang K, Wang J, Lou G and Li K: Large-scale profiling of
metabolic dysregulation in ovarian cancer. Int J Cancer.
136:516–526. 2015.
|
26
|
Montopoli M, Bellanda M, Lonardoni F,
Ragazzi E, Dorigo P, Froldi G, Mammi S and Caparrotta L: 'Metabolic
reprogramming' in ovarian cancer cells resistant to cisplatin. Curr
Cancer Drug Targets. 11:226–235. 2011. View Article : Google Scholar
|
27
|
Bauerschlag DO, Maass N, Leonhardt P,
Verburg FA, Pecks U, Zeppernick F, Morgenroth A, Mottaghy FM, Tolba
R, Meinhold-Heerlein I and Bräutigam K: Fatty acid synthase
over-expression: Target for therapy and reversal of chemoresistance
in ovarian cancer. J Transl Med. 13:146. 2015. View Article : Google Scholar
|
28
|
Pasto A, Bellio C, Pilotto G, Ciminale V,
Silic-Benussi M, Guzzo G, Rasola A, Frasson C, Nardo G, Zulato E,
et al: Cancer stem cells from epithelial ovarian cancer patients
privilege oxidative phosphorylation, and resist glucose
deprivation. Oncotarget. 5:4305–4319. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Raspollini MR, Amunni G, Villanucci A,
Boddi V and Taddei GL: Increased cyclooxygenase-2 (COX-2) and
P-glycoprotein-170 (MDR1) expression is associated with
chemotherapy resistance and poor prognosis. Analysis in ovarian
carcinoma patients with low and high survival. Int J Gynecol
Cancer. 15:255–260. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ferrandina G, Lauriola L, Zannoni GF,
Fagotti A, Fanfani F, Legge F, Maggiano N, Gessi M, Mancuso S,
Ranelletti FO and Scambia G: Increased cyclooxygenase-2 (COX-2)
expression is associated with chemotherapy resistance and outcome
in ovarian cancer patients. Ann Oncol. 13:1205–1211. 2002.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chkourko Gusky H, Macdougald OA and
Podgorski I: Omentum and bone marrow: How adipocyte-rich organs
create tumour microenvironments conducive for metastatic
progression. Obes Rev. 17:1015–1029. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fan S, Wang Y, Zhang Z, Lu J, Wu Z, Shan
Q, Sun C, Wu D, Li M, Sheng N, et al: High expression of
glutamate-ammonia ligase is associated with unfavorable prognosis
in patients with ovarian cancer. J Cell Biochem. 119:6008–6015.
2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shim GS, Manandhar S, Shin DH, Kim TH and
Kwak MK: Acquisition of doxorubicin resistance in ovarian carcinoma
cells accompanies activation of the NRF2 pathway. Free radical
biology & medicine. 47:1619–1631. 2009. View Article : Google Scholar
|
34
|
Yuan L, Sheng X, Willson AK, Roque DR,
Stine JE, Guo H, Jones HM, Zhou C and Bae-Jump VL: Glutamine
promotes ovarian cancer cell proliferation through the mTOR/S6
pathway. Endocr Relat Cancer. 22:577–591. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Papaevangelou E, Almeida GS, Box C,
deSouza NM and Chung YL: The effect of FASN inhibition on the
growth and metabolism of a cisplatin-resistant ovarian carcinoma
model. Int J Cancer. 143:992–1002. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kobayashi Y, Kashima H, Wu RC, Jung JG,
Kuan JC, Gu J, Xuan J, Sokoll L, Visvanathan K, Shih IeM and Wang
TL: Mevalonate pathway antagonist suppresses formation of serous
tubal intraepithelial carcinoma and ovarian carcinoma in mouse
models. Clin Cancer Res. 21:4652–4662. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Matassa DS, Amoroso MR, Lu H, Avolio R,
Arzeni D, Procaccini C, Faicchia D, Maddalena F, Simeon V,
Agliarulo I, et al: Oxidative metabolism drives
inflammation-induced platinum resistance in human ovarian cancer.
Cell Death Differ. 23:1542–1554. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Harjes U, Bridges E, Gharpure KM, Roxanis
I, Sheldon H, Miranda F, Mangala LS, Pradeep S, Lopez-Berestein G,
Ahmed A, et al: Antiangiogenic and tumour inhibitory effects of
downregulating tumour endothelial FABP4. Oncogene. 36:912–921.
2017. View Article : Google Scholar :
|