1
|
Harbeck N and Gnant M: Breast cancer.
Lancet. 389:1134–1150. 2017. View Article : Google Scholar
|
2
|
Pierobon M, Ramos C, Wong S, Hodge KA,
Aldrich J, Byron S, Anthony SP, Robert NJ, Northfelt DW, Jahanzeb
M, et al: Enrichment of PI3K-AKT-mTOR pathway activation in hepatic
metastases from breast cancer. Clin Cancer Res. 23:4919–4928. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Peng Y, Wang Y, Tang N, Sun D, Lan Y, Yu
Z, Zhao X, Feng L, Zhang B, Jin L, et al: Andrographolide inhibits
breast cancer through suppressing COX-2 expression and angiogenesis
via inactivation of p300 signaling and VEGF pathway. J Exp Clin
Cancer Res. 37:2482018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cai F, Zhang L, Xiao X, Duan C, Huang Q,
Fan C, Li J, Liu X, Li S and Liu Y: Cucurbitacin B reverses
multidrug resistance by targeting CIP2A to reactivate protein
phosphatase 2A in MCF-7/adriamycin cells. Oncol Rep. 36:1180–1186.
2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li GY, Jung KH, Lee H, Son MK, Seo J, Hong
SW, Jeong Y, Hong S and Hong SS: A novel imidazopyridine
derivative, HS-106, induces apoptosis of breast cancer cells and
represses angiogenesis by targeting the PI3K/mTOR pathway. Cancer
Lett. 329:59–67. 2013. View Article : Google Scholar
|
6
|
Popolo A, Pinto A, Daglia M, Nabavi SF,
Farooqi AA and Rastrelli L: Two likely targets for the anti-cancer
effect of indole derivatives from cruciferous vegetables:
PI3K/Akt/mTOR signalling pathway and the aryl hydrocarbon receptor.
Semin Cancer Biol. 46:132–137. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Miller TW, Rexer BN, Garrett JT and
Arteaga CL: Mutations in the phosphatidylinositol 3-kinase pathway:
Role in tumor progression and therapeutic implications in breast
cancer. Breast Cancer Res. 13:2242011. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Qin H, Liu L, Sun S, Zhang D, Sheng J, Li
B and Yang W: The impact of PI3K inhibitors on breast cancer cell
and its tumor microenvironment. PeerJ. 6:e50922018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xing Y, Lin NU, Maurer MA, Chen H, Mahvash
A, Sahin A, Akcakanat A, Li Y, Abramson V, Litton J, et al: Phase
II trial of AKT inhibitor MK-2206 in patients with advanced breast
cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN
loss/PTEN mutation. Breast Cancer Res. 21:782019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Frustaci AM, Tedeschi A, Deodato M,
Zamprogna G, Cairoli R and Montillo M: Duvelisib: A new
phosphoinositide-3-kinase inhibitor in chronic lymphocytic
leukemia. Future Oncol. 15:2227–2239. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Massacesi C, Di Tomaso E, Urban P, Germa
C, Quadt C, Trandafir L, Aimone P, Fretault N, Dharan B, Tavorath R
and Hirawat S: PI3K inhibitors as new cancer therapeutics:
Implications for clinical trial design. Onco Targets Ther.
9:203–210. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bendell JC, Varghese AM, Hyman DM, Bauer
TM, Pant S, Callies S, Lin J, Martinez R, Wickremsinhe E, Fink A,
et al: A first-in-human phase 1 study of LY3023414, an oral
PI3K/mTOR dual inhibitor, in patients with advanced cancer. Clin
Cancer Res. 24:3253–3262. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lin T, Leung C, Nguyen KT and Figlin RA:
Mammalian target of rapamycin (mTOR) inhibitors in solid tumours.
Clin Pharm. 8:2016.
|
14
|
Markham A: Alpelisib: First global
approval. Drugs. 79:1249–1253. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim O, Jeong Y, Lee H, Hong SS and Hong S:
Design and synthesis of imidazopyridine analogues as inhibitors of
phosphoinositide 3-kinase signaling and angiogenesis. J Med Chem.
54:2455–2466. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang H, Medeiros PF, Raha K, Elkins P,
Lind KE, Lehr R, Adams ND, Burgess JL, Schmidt SJ, Knight SD, et
al: Discovery of a potent class of PI3Kα inhibitors with unique
binding mode via encoded library technology (ELT). ACS Med Chem
Lett. 6:531–536. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
John RR, Malathi N, Ravindran C and
Anandan S: Mini review: Multifaceted role played by cyclin D1 in
tumor behavior. Indian J Dent Res. 28:187–192. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu S, Bishop WR and Liu M: Differential
effects of cell cycle regulatory protein p21(WAF1/Cip1) on
apoptosis and sensitivity to cancer chemotherapy. Drug Resist
Updat. 6:183–195. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nur Husna SM, Tan HT, Mohamud R, Dyhl-Polk
A and Wong KK: Inhibitors targeting CDK4/6, PARP and PI3K in breast
cancer: A review. Ther Adv Med Oncol. 10:17588359188085092018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Lee JJ, Loh K and Yap YS: PI3K/Akt/mTOR
inhibitors in breast cancer. Cancer Biol Med. 12:342–354. 2015.
|
21
|
Castaneda CA, Cortes-Funes H, Gomez HL and
Ciruelos EM: The phosphatidyl inositol 3-kinase/AKT signaling
pathway in breast cancer. Cancer Metastasis Rev. 29:751–759. 2010.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Fruman DA, Chiu H, Hopkins BD, Bagrodia S,
Cantley LC and Abraham RT: The PI3K pathway in human disease. Cell.
170:605–635. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Janku F, Yap TA and Meric-Bernstam F:
Targeting the PI3K pathway in cancer: Are we making headway? Nat
Rev Clin Oncol. 15:273–291. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu XL, Xu YC, Wang YX, Chen Y, Wang BB,
Wang Y, Chen YH, Tan C, Hu LD, Ma QY, et al: Decrease in
phosphorylated ERK indicates the therapeutic efficacy of a clinical
PI3Kα-selective inhibitor CYH33 in breast cancer. Cancer Lett.
433:273–282. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sabine VS, Crozier C, Brookes CL, Drake C,
Piper T, van de Velde CJ, Hasenburg A, Kieback DG, Markopoulos C,
Dirix L, et al: Mutational analysis of PI3K/AKT signaling pathway
in tamoxifen exemestane adjuvant multinational pathology study. J
Clin Oncol. 32:2951–2958. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zardavas D, Marvelde LT, Milne R, Joensuu
H, Moynahan ME, Hennessy B, Bieche I, Saal LH, Stal O, Iacopetta B,
et al: Tumor PIK3CA genotype and prognosis: A pooled analysis of
4,241 patients (pts) with early-stage breast cancer (BC). J Clin
Oncol. 33 (Suppl. 15): S5162015. View Article : Google Scholar
|
27
|
Yang SX, Polley E and Lipkowitz S: New
insights on PI3K/AKT pathway alterations and clinical outcomes in
breast cancer. Cancer Treat Rev. 45:87–96. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Dhatchana Moorthy N, Muthu Ramalingam B,
Iqbal S, Mohanakrishnan AK, Gunasekaran K and Vellaichamy E: Novel
isothiacalothrixin B analogues exhibit cytotoxic activity on human
colon cancer cells in vitro by inducing irreversible DNA damage.
PLoS One. 13:e02029032018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee JH, Lee H, Yun SM, Jung KH, Jeong Y,
Yan HH, Hong S and Hong SS: IPD-196, a novel phosphatidylinositol
3-kinase inhibitor with potent anticancer activity against
hepatocellular carcinoma. Cancer Lett. 329:99–108. 2013. View Article : Google Scholar
|
30
|
Vermeulen K, Van Bockstaele DR and
Berneman ZN: The cell cycle: A review of regulation, deregulation
and therapeutic targets in cancer. Cell Prolif. 36:131–149. 2003.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Alao JP: The regulation of cyclin D1
degradation: Roles in cancer development and the potential for
therapeutic invention. Mol Cancer. 6:242007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Deng T, Yan G, Song X, Xie L, Zhou Y, Li
J, Hu X, Li Z, Hu J, Zhang Y, et al: Deubiquitylation and
stabilization of p21 by USP11 is critical for cell-cycle
progression and DNA damage responses. Proc Natl Acad Sci USA.
115:4678–4683. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Morgan DO: Principles of CDK regulation.
Nature. 374:131–134. 1995. View Article : Google Scholar : PubMed/NCBI
|
34
|
Reed SI, Bailly E, Dulic V, Hengst L,
Resnitzky D and Slingerland J: G1 control in mammalian cells. J
Cell Sci Suppl. 18:69–73. 1994. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sherr CJ and Roberts JM: CDK inhibitors:
Positive and negative regulators of G1-phase progression. Genes
Dev. 13:1501–1512. 1999. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lim JH, Lee YM, Park SR, Kim DH and Lim
BO: Anticancer activity of hispidin via reactive oxygen
species-mediated apoptosis in colon cancer cells. Anticancer Res.
34:4087–4093. 2014.PubMed/NCBI
|
37
|
Norbury CJ and Zhivotovsky B: DNA
damage-induced apop-tosis. Oncogene. 23:2797–2808. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang L, Liu Y, Wang M, Qian Y, Dai X, Zhu
Y, Chen J, Guo S and Hisamitsu T: Celastrus orbiculatus extract
triggers apoptosis and autophagy via PI3K/Akt/mTOR inhibition in
human colorectal cancer cells. Oncol Lett. 12:3771–3778. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Kumar D, Das B, Sen R, Kundu P, Manna A,
Sarkar A, Chowdhury C, Chatterjee M and Das P: Andrographolide
analogue induces apoptosis and autophagy mediated cell death in
U937 cells by inhibition of PI3K/Akt/mTOR pathway. PLoS One.
10:e01396572015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Basu A and Sridharan S: Regulation of
anti-apoptotic Bcl-2 family protein Mcl-1 by S6 kinase 2. PLoS One.
12:e01738542017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Walsh JG, Cullen SP, Sheridan C, Luthi AU,
Gerner C and Martin SJ: Executioner caspase-3 and caspase-7 are
functionally distinct proteases. Proc Natl Acad Sci USA.
105:12815–12819. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Karar J and Maity A: PI3K/AKT/mTOR pathway
in angiogen-esis. Front Mol Neurosci. 4:512011. View Article : Google Scholar
|
43
|
Choi MJ, Lee H, Lee JH, Jung KH, Kim D,
Hong S and Hong SS: The effect of HS-111, a novel thiazolamine
derivative, on apop-tosis and angiogenesis of hepatocellular
carcinoma cells. Arch Pharm Res. 35:747–754. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kim YW, Jang EJ, Kim CH and Lee JH:
Sauchinone exerts anticancer effects by targeting AMPK signaling in
hepatocellular carcinoma cells. Chem Biol Interact. 261:108–117.
2017. View Article : Google Scholar
|
45
|
Thiery JP and Sleeman JP: Complex networks
orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell
Biol. 7:131–142. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Singh S and Chakrabarti R: Consequences of
EMT-driven changes in the immune microenvironment of breast cancer
and therapeutic response of cancer cells. J Clin Med. 8:pii: E642.
2019. View Article : Google Scholar
|