Role of noncoding RNAs in cholangiocarcinoma (Review)
- Authors:
- Yinghao Lv
- Zhenzhen Wang
- Kun Zhao
- Guokun Zhang
- Shuai Huang
- Yongfu Zhao
-
Affiliations: Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China, Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China - Published online on: April 15, 2020 https://doi.org/10.3892/ijo.2020.5047
- Pages: 7-20
This article is mentioned in:
Abstract
Blechacz B: Cholangiocarcinoma: Current Knowledge and New Developments. Gut Liver. 11:13–26. 2017. View Article : Google Scholar : | |
Rizvi S, Khan SA, Hallemeier CL, Kelley RK and Gores GJ: Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 15:95–111. 2018. View Article : Google Scholar | |
Lv Y and Huang S: Role of non-coding RNA in pancreatic cancer. Oncol Lett. 18:3963–3973. 2019.PubMed/NCBI | |
Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, Jia L, Li S, Xie W, Yang D, et al: Cancer Genome Atlas Research Network: LncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell cycle progression in cancer. Cancer Cell. 33:706–720.e9. 2018. View Article : Google Scholar | |
Han D, Gao X, Wang M, Qiao Y, Xu Y, Yang J, Dong N, He J, Sun Q, Lv G, et al: Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget. 7:22159–22173. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heter-ochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bushati N and Cohen SM: microRNA functions. Annu Rev Cell Dev Biol. 23:175–205. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lin S and Gregory RI: MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 15:321–333. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pandey P, Srivastava PK and Pandey SP: Prediction of Plant miRNA Targets. Methods Mol Biol. 1932:99–107. 2019. View Article : Google Scholar : PubMed/NCBI | |
Borges F and Martienssen RA: The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol. 16:727–741. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ushijima K, Yamada Y, Yano T and Tashiro M: An electrosurgical burn possibly caused by radio-frequency leakage current through a stainless forceps. Masui. 49:909–912. 2000.In Japanese. PubMed/NCBI | |
Piontek K and Selaru FM: MicroRNAs in the biology and diagnosis of cholangiocarcinoma. Semin Liver Dis. 35:55–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nakaoka T, Saito Y and Saito H: Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma. Int J Mol Sci. 18:182017. | |
Plieskatt J, Rinaldi G, Feng Y, Peng J, Easley S, Jia X, Potriquet J, Pairojkul C, Bhudhisawasdi V, Sripa B, et al: A microRNA profile associated with Opisthorchis viverrini-induced cholangiocarcinoma in tissue and plasma. BMC Cancer. 15:3092015. View Article : Google Scholar : PubMed/NCBI | |
Petrache Voicu SN, Dinu D, Sima C, Hermenean A, Ardelean A, Codrici E, Stan MS, Zărnescu O and Dinischiotu A: Silica Nanoparticles Induce Oxidative Stress and Autophagy but Not Apoptosis in the MRC-5 Cell Line. Int J Mol Sci. 16:29398–29416. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Han C, Lu D and Wu T: miR-17-92 cluster promotes cholangiocarcinoma growth: Evidence for PTEN as downstream target and IL-6/Stat3 as upstream activator. Am J Pathol. 184:2828–2839. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Huang F, Deng G, Nie W, Huang W and Zeng X: miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1. Exp Ther Med. 6:1265–1270. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li J, Tian F, Li D, Chen J, Jiang P, Zheng S, Li X and Wang S: miR-605 represses PSMD10/Gankyrin and inhibits intrahepatic cholangiocarcinoma cell progression. FEBS Lett. 588:3491–3500. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng Q, Feng F, Zhu L, Zheng Y, Luo X, Liu C, Yi B and Jiang X: Circulating miR-106a is a Novel Prognostic and Lymph Node Metastasis Indicator for Cholangiocarcinoma. Sci Rep. 5:161032015. View Article : Google Scholar : PubMed/NCBI | |
Patel T: Extracellular vesicle noncoding RNA: New players in the diagnosis and pathogenesis of cholangiocarcinoma. Hepatology. 60:782–784. 2014. View Article : Google Scholar : PubMed/NCBI | |
Canu V, Sacconi A, Lorenzon L, Biagioni F, Lo Sardo F, Diodoro MG, Muti P, Garofalo A, Strano S, D'Errico A, et al: miR-204 down-regulation elicited perturbation of a gene target signature common to human cholangiocarcinoma and gastric cancer. Oncotarget. 8:29540–29557. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD and Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 130:2113–2129. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Yan HX, Yang W, Hu L, Yu LX, Liu Q, Li L, Huang DD, Ding J, Shen F, et al: The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol. 50:358–369. 2009. View Article : Google Scholar | |
Yang G, Zhang R, Chen X, Mu Y, Ai J, Shi C, Liu Y, Shi C, Sun L, Rainov NG, et al: miR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status. J Mol Med (Berl). 89:1037–1050. 2011. View Article : Google Scholar | |
Okamoto K, Miyoshi K and Murawaki Y: miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells. PLoS One. 8:e776232013. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Gao W, Luo J, Tian R, Sun H and Zou S: Methyl-CpG binding protein MBD2 is implicated in methylation-mediated suppression of miR-373 in hilar cholangiocarcinoma. Oncol Rep. 25:443–451. 2011. View Article : Google Scholar | |
An F, Yamanaka S, Allen S, Roberts LR, Gores GJ, Pawlik TM, Xie Q, Ishida M, Mezey E, Ferguson-Smith AC, et al: Silencing of miR-370 in human cholangiocarcinoma by allelic loss and interleukin-6 induced maternal to paternal epigenotype switch. PLoS One. 7:e456062012. View Article : Google Scholar : PubMed/NCBI | |
Ngankeu A, Ranganathan P, Havelange V, Nicolet D, Volinia S, Powell BL, Kolitz JE, Uy GL, Stone RM, Kornblau SM, et al: Discovery and functional implications of a miR-29b-1/miR-29a cluster polymorphism in acute myeloid leukemia. Oncotarget. 9:4354–4365. 2017. View Article : Google Scholar | |
Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW and Fernandez-Zapico ME: Transcriptional suppression of mir-29b1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem. 110:1155–1164. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kwon H, Song K, Han C, Zhang J, Lu L, Chen W and Wu T: Epigenetic Silencing of miRNA-34a in Human Cholangiocarcinoma via EZH2 and DNA Methylation: Impact on Regulation of Notch Pathway. Am J Pathol. 187:2288–2299. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li B, Han Q, Zhu Y, Yu Y, Wang J and Jiang X: Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J. 279:2393–2398. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iwaki J, Kikuchi K, Mizuguchi Y, Kawahigashi Y, Yoshida H, Uchida E and Takizawa T: miR-376c down-regulation accelerates EGF-dependent migration by targeting GRB2 in the HuCCT1 human intrahepatic cholangiocarcinoma cell line. PLoS One. 8:e694962013. View Article : Google Scholar : PubMed/NCBI | |
Peng F, Jiang J, Yu Y, Tian R, Guo X, Li X, Shen M, Xu M, Zhu F, Shi C, et al: Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis. Br J Cancer. 109:3092–3104. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Chen Y, Tang C, Li H, Wang B, Yan Q, Hu J and Zou S: MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b. BMC Cancer. 14:9172014. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Han C, Zhu H, Song K and Wu T: miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF). Am J Pathol. 182:1629–1639. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qiu YH, Wei YP, Shen NJ, Wang ZC, Kan T, Yu WL, Yi B and Zhang YJ: miR-204 inhibits epithelial to mesenchymal transition by targeting slug in intrahepatic cholangiocarcinoma cells. Cell Physiol Biochem. 32:1331–1341. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH and Gores GJ: Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocar-cinoma cells. Gastroenterology. 128:2054–2065. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xiong B, Cheng Y, Ma L and Zhang C: miR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol. 42:219–228. 2013. View Article : Google Scholar | |
Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y, Yang J, Paun B, Jin Z, Agarwal R, et al: MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology. 49:1595–1601. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Goldberg ID and Shi YE: Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene. 21:2245–2252. 2002. View Article : Google Scholar : PubMed/NCBI | |
He Q, Cai L, Shuai L, Li D, Wang C, Liu Y, Li X, Li Z and Wang S: Ars2 is overexpressed in human cholangiocarcinomas and its depletion increases PTEN and PDCD4 by decreasing microRNA-21. Mol Carcinog. 52:286–296. 2013. View Article : Google Scholar | |
Lu L, Byrnes K, Han C, Wang Y and Wu T: miR-21 targets 15-PGDH and promotes cholangiocarcinoma growth. Mol Cancer Res. 12:890–900. 2014. View Article : Google Scholar : PubMed/NCBI | |
Triboulet R, Pirouz M and Gregory RI: A Single Let-7 MicroRNA Bypasses LIN28-Mediated Repression. Cell Rep. 13:260–266. 2015. View Article : Google Scholar : PubMed/NCBI | |
Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO and Wong CM: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology. 56:622–631. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Zhang H, Guo XJ, Feng YC, He RZ, Li X, Yu S, Zhao Y, Shen M, Zhu F, et al: Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell Death Dis. 9:2492018. View Article : Google Scholar : PubMed/NCBI | |
Lin KY, Ye H, Han BW, Wang WT, Wei PP, He B, Li XJ and Chen YQ: Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholan-giocarcinoma. Oncogene. 35:3376–3386. 2016. View Article : Google Scholar | |
Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y and Patel T: The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem. 282:8256–8264. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601. 2008. View Article : Google Scholar : PubMed/NCBI | |
Korpal M, Lee ES, Hu G and Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 283:14910–14914. 2008. View Article : Google Scholar : PubMed/NCBI | |
Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R and Finn SP: Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front Mol Biosci. 4:382017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Xie Q, He D, Ling Y, Li Y, Li J and Zhang H: Circular RNA: new star, new hope in cancer. BMC Cancer. 18:8342018. View Article : Google Scholar : PubMed/NCBI | |
Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T and Engelhardt S: Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol. 98:103–107. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Zhang J and Song C: CircRNA ZNF609 functions as a competitive endogenous RNA to regulate FOXP4 expression by sponging miR-138-5p in renal carcinoma. J Cell Physiol. 234:10646–10654. 2019. View Article : Google Scholar | |
Xu Y, Yao Y, Leng K, Ji D, Qu L, Liu Y and Cui Y: Increased Expression of Circular RNA circ_0005230 Indicates Dismal Prognosis in Breast Cancer and Regulates Cell Proliferation and Invasion via miR-618/CBX8 Signal Pathway. Cell Physiol Biochem. 51:1710–1722. 2018. View Article : Google Scholar | |
Xu Y, Yao Y, Liu Y, Wang Z, Hu Z, Su Z, Li C, Wang H, Jiang X, Kang P, et al: Elevation of circular RNA circ_0005230 facilitates cell growth and metastasis via sponging miR-1238 and miR-1299 in cholangiocarcinoma. Aging (Albany NY). 11:1907–1917. 2019. View Article : Google Scholar | |
Shi X, Zhan L, Xiao C, Lei Z, Yang H, Wang L, Zhao J and Zhang HT: miR-1238 inhibits cell proliferation by targeting LHX2 in non-small cell lung cancer. Oncotarget. 6:19043–19054. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang XM, Li ZL, Li JL, Xu Y, Leng KM, Cui YF and Sun DJ: A novel prognostic biomarker for cholangiocarcinoma: circRNA Cdr1as. Eur Rev Med Pharmacol Sci. 22:365–371. 2018.PubMed/NCBI | |
Xu Y, Yao Y, Zhong X, Leng K, Qin W, Qu L, Cui Y and Jiang X: Downregulated circular RNA hsa_circ_0001649 regulates proliferation, migration and invasion in cholangiocarcinoma cells. Biochem Biophys Res Commun. 496:455–461. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Hu Y, Lv X, Li B, Gu D, Li Y, Sun Y and Su Y: Circ-0000284 arouses malignant phenotype of cholangiocarcinoma cells and regulates the biological functions of peripheral cells through cellular communication. Clin Sci (Lond). 133:1935–1953. 2019. View Article : Google Scholar | |
Sun M and Kraus WL: From discovery to function: The expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev. 36:25–64. 2015. View Article : Google Scholar : | |
Chen J, Miao Z, Xue B, Shan Y, Weng G and Shen B: Long Non-coding RNAs in Urologic Malignancies: Functional Roles and Clinical Translation. J Cancer. 7:1842–1855. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xie H, Ling Q, Lu D, Lv Z, Zhuang R, Liu Z, Wei X, Zhou L, Xu X, et al: Coding-noncoding gene expression in intra-hepatic cholangiocarcinoma. Transl Res. 168:107–121. 2016. View Article : Google Scholar | |
Hao S, Yao L, Huang J, He H, Yang F, Di Y, Jin C and Fu D: Genome‑Wide Analysis Identified a Number of Dysregulated Long Noncoding RNA (lncRNA) in Human Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat. 17:15330346177484292018. View Article : Google Scholar | |
Yao Y, Sun Y, Jiang Y, Qu L and Xu Y: Enhanced expression of lncRNA TP73-AS1 predicts adverse phenotypes for cholangio-carcinoma and exerts oncogenic properties in vitro and in vivo. Biomed Pharmacother. 106:260–266. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Cai Q, Li W, Feng F and Yang L: Long non-coding RNA EPIC1 promotes cholangiocarcinoma cell growth. Biochem Biophys Res Commun. 504:654–659. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Wang Z, Jiang X and Cui Y: Overexpression of long noncoding RNA H19 indicates a poor prognosis for cholangio-carcinoma and promotes cell migration and invasion by affecting epithelial-mesenchymal transition. Biomed Pharmacother. 92:17–23. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang WT, Ye H, Wei PP, Han BW, He B, Chen ZH and Chen YQ: LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. 9:1172016. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Xiao J, Chai Y, Du YY, Liu Z, Huang K, Zhou X and Zhou W: LncRNA-CCAT1 Promotes Migration, Invasion, and EMT in Intrahepatic Cholangiocarcinoma Through Suppressing miR-152. Dig Dis Sci. 62:3050–3058. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma F, Wang SH, Cai Q, Zhang MD, Yang Y and Ding J: Overexpression of LncRNA AFAP1-AS1 predicts poor prognosis and promotes cells proliferation and invasion in gallbladder cancer. Biomed Pharmacother. 84:1249–1255. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Li JY, Tian FZ, Zhao G, Hu H, Ma YF and Yang YL: Long Noncoding RNA NEAT1 Promotes Growth and Metastasis of Cholangiocarcinoma Cells. Oncol Res. 26:879–888. 2018. View Article : Google Scholar : PubMed/NCBI | |
Parasramka M, Yan IK, Wang X, Nguyen P, Matsuda A, Maji S, Foye C, Asmann Y and Patel T: BAP1 dependent expression of long non-coding RNA NEAT-1 contributes to sensitivity to gemcitabine in cholangiocarcinoma. Mol Cancer. 16:222017. View Article : Google Scholar : PubMed/NCBI | |
Ma SL, Li AJ, Hu ZY, Shang FS and Wu MC: Co expression of the carbamoyl phosphate synthase 1 gene and its long non coding RNA correlates with poor prognosis of patients with intrahepatic cholangiocarcinoma. Mol Med Rep. 12:7915–7926. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Mao ZP, Wang L, Wu GH, Zhang FH, Wang DY and Shi JL: Long non-coding RNA MALAT1 promotes cholangio-carcinoma cell proliferation and invasion by activating PI3K/Akt pathway. Neoplasma. 64:725–731. 2017. View Article : Google Scholar | |
Shi X, Sun M, Liu H, Yao Y and Song Y: Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett. 339:159–166. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tan X, Huang Z and Li X: Long Non-Coding RNA MALAT1 Interacts With miR-204 to Modulate Human Hilar Cholangiocarcinoma Proliferation, Migration, and Invasion by Targeting CXCR4. J Cell Biochem. 118:3643–3653. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qin X, Lu M, Zhou Y, Li G and Liu Z: LncRNA FENDRR represses proliferation, migration and invasion through suppression of survivin in cholangiocarcinoma cells. Cell Cycle. 18:889–897. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR and Klibanski A: A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 88:5119–5126. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, He Z, Liu B, Wang P and Chen Y: Downregulation of Meg3 enhances cisplatin resistance of lung cancer cells through activation of the WNT/β-catenin signaling pathway. Mol Med Rep. 12:4530–4537. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sribenja S, Natthasirikul N, Vaeteewoottacharn K, Sawanyawisuth K, Wongkham C, Jearanaikoon P and Wongkham S: Thymosin β10 as a predictive biomarker of response to 5‑fluorouracil chemotherapy in cholangiocarcinoma. Ann Hepatol. 15:577–585. 2016.PubMed/NCBI | |
Liang Z, Zhu B, Meng D, Shen X, Li X, Wang Z and Li L: Down-regulation of lncRNA-NEF indicates poor prognosis in intrahepatic cholangiocarcinoma. Biosci Rep. 39:392019. View Article : Google Scholar | |
Hu X, Tan Z, Yang Y and Yang P: Long non-coding RNA MIR22HG inhibits cell proliferation and migration in cholangio-carcinoma by negatively regulating the Wnt/β-catenin signaling pathway. J Gene Med. 21:e30852019. View Article : Google Scholar | |
Luo M, Li Z, Wang W, Zeng Y, Liu Z and Qiu J: Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 333:213–221. 2013. View Article : Google Scholar : PubMed/NCBI | |
Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S and Dandolo L: H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci USA. 110:20693–20698. 2013. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Kong G, You X, Zhang S, Zhang T, Gao Y, Ye L and Zhang X: Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem. 287:26302–26311. 2012. View Article : Google Scholar : PubMed/NCBI | |
King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS and Rustgi AK: LIN28B promotes colon cancer progression and metastasis. Cancer Res. 71:4260–4268. 2011. View Article : Google Scholar : PubMed/NCBI | |
Viswanathan SR and Daley GQ: Lin28: A microRNA regulator with a macro role. Cell. 140:445–449. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cao MX, Jiang YP, Tang YL and Liang XH: The crosstalk between lncRNA and microRNA in cancer metastasis: Orchestrating the epithelial-mesenchymal plasticity. Oncotarget. 8:12472–12483. 2017. View Article : Google Scholar : | |
Jia P, Cai H, Liu X, Chen J, Ma J, Wang P, Liu Y, Zheng J and Xue Y: Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett. 381:359–369. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Li C, Xiao L, Li J, Pei H, Xu D, Jiang Y, Zhang X, Zhang L, Li K, et al: High expression of long non-coding RNA NNT-AS1 facilitates progression of cholangiocarcinoma through promoting epithelial-mesenchymal transition. Am J Transl Res. 11:5438–5456. 2019.PubMed/NCBI | |
Wang X, Ren M, Li Y, Hu J, Lu G, Ma W, Guo D, Lu X and He S: Long noncoding RNA NNT-AS1 promotes gastric cancer proliferation and invasion by regulating microRNA-363 expression. J Cell Biochem. 120:5704–5712. 2019. View Article : Google Scholar | |
Hua F, Liu S, Zhu L, Ma N, Jiang S and Yang J: Highly expressed long non-coding RNA NNT-AS1 promotes cell proliferation and invasion through Wnt/β-catenin signaling pathway in cervical cancer. Biomed Pharmacother. 92:1128–1134. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Shi J and Xu Y: Long non-coding RNA NNT-AS1 contributes to cell proliferation, metastasis and apoptosis in human ovarian cancer. Oncol Lett. 15:9264–9270. 2018.PubMed/NCBI | |
Merry CR, Forrest ME, Sabers JN, Beard L, Gao XH, Hatzoglou M, Jackson MW, Wang Z, Markowitz SD and Khalil AM: DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet. 24:6240–6253. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Zhang M, Wang N, Li Q, Yang J, Yan S, He X, Ji G and Miao L: Epigenetic silencing of tumor suppressor gene CDKN1A by oncogenic long non-coding RNA SNHG1 in cholangiocarcinoma. Cell Death Dis. 9:7462018. View Article : Google Scholar : PubMed/NCBI | |
Jalili A, Wagner C, Pashenkov M, Pathria G, Mertz KD, Widlund HR, Lupien M, Brunet JP, Golub TR, Stingl G, et al: Dual suppression of the cyclin-dependent kinase inhibitors CDKN2C and CDKN1A in human melanoma. J Natl Cancer Inst. 104:1673–1679. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Xu Y and Fu Q: Curcumin inhibits growth of prostate carcinoma via miR-208-mediated CDKN1A activation. Tumour Biol. 36:8511–8517. 2015. View Article : Google Scholar : PubMed/NCBI | |
Askari M, Sobti RC, Nikbakht M and Sharma SC: Aberrant promoter hypermethylation of p21 (WAF1/CIP1) gene and its impact on expression and role of polymorphism in the risk of breast cancer. Mol Cell Biochem. 382:19–26. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Zhang M, Liu J, Xu B, Yang J, Wang N, Yan S, Wang F, He X, Ji G, et al: Long Non-coding RNA PVT1 Promotes Cell Proliferation and Migration by Silencing ANGPTL4 Expression in Cholangiocarcinoma. Mol Ther Nucleic Acids. 13:503–513. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kong R, Zhang EB, Yin DD, You LH, Xu TP, Chen WM, Xia R, Wan L, Sun M, Wang ZX, et al: Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol Cancer. 14:822015. View Article : Google Scholar : PubMed/NCBI | |
Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E and Chang HY: Long noncoding RNA as modular scaffold of histone modification complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI | |
Okochi-Takada E, Hattori N, Tsukamoto T, Miyamoto K, Ando T, Ito S, Yamamura Y, Wakabayashi M, Nobeyama Y and Ushijima T: ANGPTL4 is a secreted tumor suppressor that inhibits angiogenesis. Oncogene. 33:2273–2278. 2014. View Article : Google Scholar | |
Taskoparan B, Seza EG, Demirkol S, Tuncer S, Stefek M, Gure AO and Banerjee S: Opposing roles of the aldo‑keto reductases AKR1B1 and AKR1B10 in colorectal cancer. Cell Oncol (Dordr). 40:563–578. 2017. View Article : Google Scholar | |
Sinreih M, Štupar S, Čemažar L, Verdenik I, Frković Grazio S, Smrkolj Š and Rižner TL: STAR and AKR1B10 are down-regulated in high-grade endometrial cancer. J Steroid Biochem Mol Biol. 171:43–53. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Yao Y, Qin W, Zhong X, Jiang X and Cui Y: Long non-coding RNA CCAT2 promotes cholangiocarcinoma cells migration and invasion by induction of epithelial-to-mesenchymal transition. Biomed Pharmacother. 99:121–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bai JG, Tang RF, Shang JF, Qi S, Yu GD and Sun C: Upregulation of long non coding RNA CCAT2 indicates a poor prognosis and promotes proliferation and metastasis in intrahepatic cholangio-carcinoma. Mol Med Rep. 17:5328–5335. 2018.PubMed/NCBI | |
Le Gallo M, Lozy F and Bell DW: Next-Generation Sequencing. Adv Exp Med Biol. 943:119–148. 2017. View Article : Google Scholar | |
Levy SE and Myers RM: Advancements in Next-Generation Sequencing. Annu Rev Genomics Hum Genet. 17:95–115. 2016. View Article : Google Scholar : PubMed/NCBI | |
Slatko BE, Gardner AF and Ausubel FM: Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol. 122:e592018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Han C and Wu T: MicroRNA-26a promotes cholangio-carcinoma growth by activating β-catenin. Gastroenterology. 143:246–56.e8. 2012. View Article : Google Scholar | |
Namwat N, Chusorn P, Loilome W, Techasen A, Puetkasichonpasutha J, Pairojkul C, Khuntikeo N and Yongvanit P: Expression profiles of oncomir miR‑21 and tumor suppressor let-7a in the progression of opisthorchiasis-associated cholangiocarcinoma. Asian Pac J Cancer Prev. 13(Suppl): 65–69. 2012. | |
Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST and Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 133:647–658. 2007. View Article : Google Scholar : PubMed/NCBI | |
Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR and Mott JL: miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology. 55:465–475. 2012. View Article : Google Scholar | |
Khapre RV, Samsa WE and Kondratov RV: Circadian regulation of cell cycle: Molecular connections between aging and the circadian clock. Ann Med. 42:404–415. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Li TW, Peng J, Tang X, Ko KS, Xia M and Aller MA: A mouse model of cholestasis-associated cholangiocar-cinoma and transcription factors involved in progression. Gastroenterology. 141:378–388.e3884. 2011. View Article : Google Scholar | |
Li Q, Xia X, Ji J, Ma J, Tao L, Mo L and Chen W: miR-199a-3p enhances cisplatin sensitivity of cholangiocarcinoma cells by inhibiting mTOR signaling pathway and expression of MDR1. Oncotarget. 8:33621–33630. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong XY, Yu JH, Zhang WG, Wang ZD, Dong Q, Tai S, Cui YF and Li H: MicroRNA-421 functions as an oncogenic miRNA in biliary tract cancer through down-regulating farnesoid X receptor expression. Gene. 493:44–51. 2012. View Article : Google Scholar | |
Olaru AV, Ghiaur G, Yamanaka S, Luvsanjav D, An F, Popescu I, Alexandrescu S, Allen S, Pawlik TM, Torbenson M, et al: MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint. Hepatology. 54:2089–2098. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cermakian N and Sassone-Corsi P: Multilevel regulation of the circadian clock. Nat Rev Mol Cell Biol. 1:59–67. 2000. View Article : Google Scholar | |
Han Y, Meng F, Venter J, Wu N, Wan Y, Standeford H, Francis H, Meininger C, Greene J Jr, Trzeciakowski JP, et al: miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. J Hepatol. 64:1295–1304. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qiao P, Li G, Bi W, Yang L, Yao L and Wu D: microRNA-34a inhibits epithelial mesenchymal transition in human cholangio-carcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway. BMC Cancer. 15:4692015. View Article : Google Scholar | |
Palumbo T, Poultsides GA, Kouraklis G, Liakakos T, Drakaki A, Peros G, Hatziapostolou M and Iliopoulos D: A functional microRNA library screen reveals miR-410 as a novel anti-apoptotic regulator of cholangiocarcinoma. BMC Cancer. 16:3532016. View Article : Google Scholar : PubMed/NCBI | |
Braconi C, Huang N and Patel T: MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology. 51:881–890. 2010.PubMed/NCBI | |
Chen Y, Luo J, Tian R, Sun H and Zou S: miR-373 negatively regulates methyl-CpG-binding domain protein 2 (MBD2) in hilar cholangiocarcinoma. Dig Dis Sci. 56:1693–1701. 2011. View Article : Google Scholar | |
Zeng B, Ye H, Chen J, Cheng D, Cai C, Chen G, Chen X, Xin H, Tang C and Zeng J: LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis. Oncotarget. 8:113650–113661. 2017. View Article : Google Scholar | |
Zhang F, Wan M, Xu Y, Li Z, Leng K, Kang P, Cui Y and Jiang X: Long noncoding RNA PCAT1 regulates extrahepatic chol-angiocarcinoma progression via the Wnt/β-catenin-signaling pathway. Biomed Pharmacother. 94:55–62. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kong L, Wu Q, Zhao L, Ye J, Li N and Yang H: Upregulated lncRNA-UCA1 contributes to metastasis of bile duct carcinoma through regulation of miR-122/CLIC1 and activation of the ERK/MAPK signaling pathway. Cell Cycle. 18:1212–1228. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Yao Y, Jiang X, Zhong X, Wang Z, Li C, Kang P, Leng K, Ji D, Li Z, et al: SP1-induced upregulation of lncRNA SPRY4-IT1 exerts oncogenic properties by scaffolding EZH2/LSD1/DNMT1 and sponging miR-101-3p in cholangio-carcinoma. J Exp Clin Cancer Res. 37:812018. View Article : Google Scholar | |
Carotenuto P, Fassan M, Pandolfo R, Lampis A, Vicentini C, Cascione L, Paulus-Hock V, Boulter L, Guest R, Quagliata L, et al: Wnt signalling modulates transcribed-ultra-conserved regions in hepatobiliary cancers. Gut. 66:1268–1277. 2017. View Article : Google Scholar | |
Zhang D, Li H, Xie J, Jiang D, Cao L, Yang X, Xue P and Jiang X: Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human chol-angiocarcinoma. Int J Oncol. 52:1777–1786. 2018.PubMed/NCBI |