Open Access

Long non‑coding RNA LUCAT1 contributes to cisplatin resistance by regulating the miR‑514a‑3p/ULK1 axis in human non‑small cell lung cancer

  • Authors:
    • Qiming Shen
    • Zhe Xu
    • Shun Xu
  • View Affiliations

  • Published online on: August 7, 2020     https://doi.org/10.3892/ijo.2020.5106
  • Pages: 967-979
  • Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Drug resistance is a major obstacle in the therapy of malignant tumors, including non‑small cell lung cancer (NSCLC). Long non‑coding RNAs (lncRNAs) have been demonstrated to be involved in chemoresistance. The present study aimed to investigate the role of lung cancer‑associated transcript 1 (LUCAT1) in cisplatin (DDP) resistance in NSCLC. By using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), it was found that the expression of LUCAT1 was elevated and that of microRNA‑514a‑3p (miR‑514a‑3p) was decreased in DDP‑resistant NSCLC tissues and cells. Functionally, LUCAT1 upregulation enhanced cisplatin resistance by promoting the viability, autophagy and metastasis, and inhibiting the apoptosis of NSCLC cells, as demonstrated by Cell Counting kit‑8 (CCK‑8) assay, western blot analysis, Transwell assay and flow cytometric analysis. LUCAT1 was identified as a sponge of miR‑514a‑3p and uncoordinated‑51‑like kinase 1 (ULK1) was proven to be a target gene of miR‑514a‑3p by bioinformatics analysis, dual‑luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The enhancing effect of miR‑514a‑3p on cisplatin sensitivity was reversed by the elevation of LUCAT1. ULK1 knockdown suppressed cisplatin resistance, while this effect was attenuated by miR‑514a‑3p inhibition. Moreover, LUCAT1 positively regulated ULK1 expression by targeting miR‑514a‑3p. In addition, LUCAT1 knockdown suppressed tumor growth in vivo. On the whole, the findings of the present study demonstrate that LUCAT1 contributes to the resistance of NSCLC cells to cisplatin by regulating the miR‑514a‑3p/ULK1 axis, elucidating a novel regulatory network in cisplatin resistance in NSCLC.
View Figures
View References

Related Articles

Journal Cover

October-2020
Volume 57 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Shen Q, Xu Z and Xu S: Long non‑coding RNA LUCAT1 contributes to cisplatin resistance by regulating the miR‑514a‑3p/ULK1 axis in human non‑small cell lung cancer. Int J Oncol 57: 967-979, 2020.
APA
Shen, Q., Xu, Z., & Xu, S. (2020). Long non‑coding RNA LUCAT1 contributes to cisplatin resistance by regulating the miR‑514a‑3p/ULK1 axis in human non‑small cell lung cancer. International Journal of Oncology, 57, 967-979. https://doi.org/10.3892/ijo.2020.5106
MLA
Shen, Q., Xu, Z., Xu, S."Long non‑coding RNA LUCAT1 contributes to cisplatin resistance by regulating the miR‑514a‑3p/ULK1 axis in human non‑small cell lung cancer". International Journal of Oncology 57.4 (2020): 967-979.
Chicago
Shen, Q., Xu, Z., Xu, S."Long non‑coding RNA LUCAT1 contributes to cisplatin resistance by regulating the miR‑514a‑3p/ULK1 axis in human non‑small cell lung cancer". International Journal of Oncology 57, no. 4 (2020): 967-979. https://doi.org/10.3892/ijo.2020.5106