1
|
Steinman RM and Banchereau J: Taking
dendritic cells into medicine. Nature. 449:419–426. 2007.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Baldin AV, Savvateeva LV, Bazhin AV and
Zamyatnin AA Jr: Dendritic cells in anticancer vaccination:
Rationale for ex vivo loading or in vivo targeting. Cancers
(Basel). 12:5902020. View Article : Google Scholar
|
3
|
Rosenberg SA, Yang JC and Restifo NP:
Cancer immunotherapy: Moving beyond current vaccines. Nat Med.
10:909–915. 2004. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Koido S, Homma S, Okamoto M, Takakura K,
Mori M, Yoshizaki S, Tsukinaga S, Odahara S, Koyama S, Imazu H, et
al: Treatment with chemotherapy and dendritic cells pulsed with
multiple Wilms' tumor 1 (WT1)-specific MHC class I/II-restricted
epitopes for pancreatic cancer. Clin Cancer Res. 20:4228–4239.
2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Melseen M and Slingluff CL Jr: Vaccines
targeting helper T cells for cancer immunotherapy. Curr Opin
Immunol. 47:85–92. 2017. View Article : Google Scholar
|
6
|
Taniuchi I: CD4 helper and CD8 cytotoxic T
cell differentiation. Annu Rev Immunol. 36:579–601. 2018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Fujiki F, Oka Y, Kawakatsu M, Tsuboi A,
Nakajima H, Elisseeva OA, Harada Y, Li Z, Tatsumi N, Kamino E, et
al: A WT1 protein-derived, naturally processed 16-mer peptide,
WT1(332), is a promiscuous helper peptide for induction of
WT1-specificTh1-type CD4(+) T cells. Microbiol Immunol. 52:591–600.
2008. View Article : Google Scholar
|
8
|
Koski GK, Koldovsky U, Xu S, Mick R,
Sharma A, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox
K, et al: A novel dendritic cell-based immunization approach for
the induction of durable Th1-polarized anti-HER-2/neu responses in
women with early breast cancer. J Immunother. 35:54–65. 2012.
View Article : Google Scholar
|
9
|
Sharma A, Koldovsky U, Xu S, Mick R, Roses
R, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, et
al: HER-2 pulsed dendritic cell vaccine can eliminate HER-2
expression and impact ductal carcinoma in situ. Cancer.
118:4354–4362. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Aarntzen EH, De Vries IJ, Lesterhuis WJ,
Schuurhuis D, Jacobs JF, Bol K, Schreibelt G, Mus R, De Wilt JH,
Haanen JB, et al: Targeting CD4(+) T-helper cells improves the
induction of antitumor responses in dendritic cell-based
vaccination. Cancer Res. 73:19–29. 2013. View Article : Google Scholar
|
11
|
Chever MA, Allison JP, Ferris AS, Finn OJ,
Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner
LM, et al: The prioritization of cancer antigens: A national cancer
institute pilot project for the acceleration of translational
research. Clin Cancer Res. 15:5323–5337. 2009. View Article : Google Scholar
|
12
|
Huff V: Wilms' tumours: About tumour
suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer.
11:111–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo
T, Nakajima H, Elisseeva OA, Oji Y, Kawakami M, Ikegame K, et al:
Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T
lymphocytes by WT1 peptide vaccinean the resultant cancer
regression. Proc Natl Acad Sci USA. 101:13885–13890. 2004.
View Article : Google Scholar
|
14
|
Takahara A, Koido S, Ito M, Nagasaki E,
Sagawa Y, Iwamoto T, Komita H, Ochi T, Fujiwara H, Yasukawa M, et
al: Gemcitabine enhances Wilms' tumor gene WT1 expression and
sensitizes human pancreatic cancer cells with WT1-specific
T-cell-mediated antitumor immune response. Cancer Immunol
Immunother. 60:1289–1297. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Krug LM, Dao T, Brown AB, Maslak P, Travis
W, Bekele S, Korontsvit T, Zakhaleva V, Wolchok J, Yuan J, et al:
WT1 peptide vaccinations induce CD4 and CD8 T cell immune responses
in patients with mesothelioma and non-small cell lung cancer.
Cancer Immunol Immunother. 59:1467–1479. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Keilholz U, Menssen HD, Gaiger A, Menke A,
Oji Y, Oka Y, Scheibenbogen C, Stauss H, Thiel E and Sugiyama H:
Wilms' tumour gene 1 (WT1) in human neoplasia. Leukemia.
19:1318–1323. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nakata J, Nakajima H, Hayashibara H,
Imafuku K, Morimoto S, Fujiki F, Motooka D, Okuzaki D, Hasegawa K,
Hosen N, et al: Extremely strong infiltration of WT1-specific CTLs
into mouse tumor by the combination vaccine with WT1-specific CTL
and helper peptides. Oncotarget. 9:36029–36038. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Schmied S, Gostick E, Price DA, Abken H,
Assenmacher M and Richter A: Analysis of the functional
WT1-specific T cell repertoire in healthy donors reveals a
discrepancy between CD4(+) and CD8(+) memory formation. Immunology.
145:558–569. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hori S, Heike Y, Takei M, Maruyama M,
Inoue Y, Lee JJ, Kim HJ, Harada Y, Kawai H, Shimosaka A, et al:
Freeze-thawing procedures have no influence on the phenotypic and
functional development of dendritic cells generated from peripheral
blood CD14+ monocytes. J Immunother. 27:27–35. 2004. View Article : Google Scholar
|
20
|
Goto M, Nakamura M, Suginobe N, Takasu H,
Takanashi Y, Ban H and Li C: DSP-7888, a novel cocktail design of
WT1 peptide vaccine, and its combinational immunotherapy with
immune checkpoint-blocking antibody against PD-1. Blood. 128:4715.
2016. View Article : Google Scholar
|
21
|
Miyakoshi S, Usuki K, Matsumura I, Ueda Y,
Iwasaki H, Miyamoto T, Origuchi M, Tagashira S, Naoi I, Naoe T, et
al: Preliminary results from a phase 1/2 study of DSP-7888, a novel
WT1 peptide-based vaccine in patients with myelodysplastic syndrome
(MDS). Blood. 128:4335. 2016. View Article : Google Scholar
|
22
|
Rosalia RA, Quakkelaar ED, Redeker A, Khan
S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van
Veelen PA, et al: Dendritic cells process synthetic long peptides
better than whole protein, improving antigen presentation and
T-cell activation. Eur J Immunol. 43:2554–2565. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Maiers M, Graget L and Klitz W:
High-resolution HLA alleles and haplotypes in the United States
population. Hum Immunol. 68:779–788. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mintern JD, Davey GM, Belz GT, Carbone FR
and Heath WR: Cutting edge: Precursor frequency affects the helper
dependence of cytotoxic T cells. J Immunol. 168:977–980. 2002.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lanzavecchia A and Sallusto F: Dynamics of
T lymphocyte responses: Intermediates, effectors, and memory cells.
Science. 290:92–97. 2000. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wedén S, Klemp M, Gladhaug IP, Møller M,
Eriksen JA, Gaudernack G and Buanes T: Long-term follow-up of
patients with resected pancreatic cancer following vaccination
against mutant K-ras. Int J Cancer. 128:1120–1128. 2011. View Article : Google Scholar
|
27
|
Nishida S, Koido S, Takeda Y, Homma S,
Komita H, Takahara A, Morita S, Ito T, Morimoto S, Hara K, et al:
Wilms tumor gene (WT1) peptide-based cancer vaccine combined with
gemcitabine for patients with advanced pancreatic cancer. J
Immunother. 37:105–114. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lesterhuis WJ, de Vries IJ, Schuurhuis DH,
Boullart AC, Jacobs JF, de Boer AJ, Scharenborg NM, Brouwer HM, van
de Rakt MW, Figdor CG, et al: Vaccination of colorectal cancer
patients with CEA-loaded dendritic cells: Antigen-specific T cell
responses in DTH skin tests. Ann Oncol. 17:974–980. 2006.
View Article : Google Scholar : PubMed/NCBI
|
29
|
MacLeod MK, Clambey ET, Kappler JW and
Marrack P: CD4 memory T cells: What are they and what can they do?
Semin Immunol. 21:53–61. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Krawczyk CM, Shen H and Pearce EJ: Memory
CD4 T cells enhance primary CD8 T-cell responses. Infect Immun.
75:3556–3560. 2007. View Article : Google Scholar : PubMed/NCBI
|