1
|
Jaffe N: Osteosarcoma: Review of the past,
impact on the future. The American experience. Cancer Treat Res.
152:239–262. 2009. View Article : Google Scholar
|
2
|
Biazzo A and De Paolis M:
Multidisciplinary approach to osteo-sarcoma. Acta Orthop Belg.
82:690–698. 2016.
|
3
|
Xiao X, Wang W and Wang Z: The role of
chemotherapy for metastatic, relapsed and refractory osteosarcoma.
Paediatr Drugs. 16:503–512. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rybak-Wolf A, Stottmeister C, Glažar P,
Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss
R, et al: Circular RNAs in the mammalian brain are highly abundant,
conserved, and dynamically expressed. Mol Cell. 58:870–885. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang G, Li Y, Liu Z, Ma X, Li M, Lu Q, Li
Y, Lu Z, Niu L, Fan Z, et al: Circular RNA circ_0124644 exacerbates
the ox-LDL-induced endothelial injury in human vascular endothelial
cells through regulating PAPP-A by acting as a sponge of
miR-149-5p. Mol Cell Biochem. 471:51–61. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li J, Li P, Zhang G, Qin P, Zhang D and
Zhao W: CircRNA TADA2A relieves idiopathic pulmonary fibrosis by
inhibiting proliferation and activation of fibroblasts. Cell Death
Dis. 11:5532020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Guo X, Dai X, Liu J, Cheng A, Qin C and
Wang Z: Circular RNA circREPS2 acts as a sponge of miR-558 to
suppress gastric cancer progression by regulating RUNX3/β-catenin
signaling. Mol Ther Nucleic Acids. 21:577–591. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Si X, Zheng H, Wei G, Li M, Li W, Wanang
H, Guouo H, Sunun J, Li C, Zhonong S, et al: circRNA Hipk3 induces
cardiac regeneration after myocardial infarction in mice by binding
to Notch1 and miR-133a. Mol Ther Nucleic Acids. 21:636–655. 2020.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Y, Lv Z, Zhanang J, Ma Q, Li Q, Sonong
L, Gonong L, Zhu Y, Li X, Hao Y, et al: Profiling of differentially
expressed circular RNAs in peripheral blood mononuclear cells from
Alzheimer's disease patients. Metab Brain Dis. 35:201–213. 2020.
View Article : Google Scholar
|
11
|
Schulte C, Barwari T, Joshi A, Theofilatos
K, Zampetaki A, Barallobre-Barreiro J, Singh B, Sörensen NA,
Neumann JT, Zeller T, et al: Comparative analysis of circulating
noncoding RNAs versus protein biomarkers in the detection of
myocardial injury. Circ Res. 125:328–340. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sun H, Xi P, Sun Z, Wang Q, Zhu B, Zhou J,
Jin H, Zheng W, Tang W, Cao H, et al: Circ-SFMBT2 promotes the
proliferation of gastric cancer cells through sponging miR-182-5p
to enhance CREB1 expression. Cancer Manag Res. 10:5725–5734. 2018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Yuan P, Lei L, Dong S and Liu D: Circular
RNA hsa_circ_0068033 acts as a diagnostic biomarker and suppresses
the progression of breast cancer through sponging miR-659.
OncoTargets Ther. 13:1921–1929. 2020. View Article : Google Scholar
|
14
|
Ren T, Liu C, Hou J and Shan F:
Hsa_circ_0043265 suppresses proliferation, metastasis, EMT and
promotes apoptosis in non-small cell lung cancer through
miR-25-3p/FOXP2 pathway. OncoTargets Ther. 13:3867–3880. 2020.
View Article : Google Scholar
|
15
|
Quan J, Dong D, Lun Y, Sun B, Sun H, Wang
Q and Yuan G: Circular RNA circHIAT1 inhibits proliferation and
epithelial-mesenchymal transition of gastric cancer cell lines
through downregulation of miR-21. J Biochem Mol Toxicol.
34:e224582020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang J, Li H and Liang Z: circ-MYBL2
serves as a sponge for miR-361-3p promoting cervical cancer cells
proliferation and invasion. OncoTargets Ther. 12:9957–9964. 2019.
View Article : Google Scholar
|
17
|
Sun J, Yin A, Zhang W, Lv J, Liang Y, Li
H, Li Y and Li X: CircUBAP2 inhibits proliferation and metastasis
of clear cell renal cell carcinoma via targeting miR-48a-3p/FOXK2
pathway. Cell Transplant. May 19–2020.Epub ahead of print.
View Article : Google Scholar
|
18
|
Wu Y, Zhi L, Zhao Y, Yang L and Cai F:
Knockdown of circular RNA UBAP2 inhibits the malignant behaviours
of esophageal squamous cell carcinoma by microRNA-422a/Rab10 axis.
Clin Exp Pharmacol Physiol. 47:1283–1290. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang S, Li Q, Wang Y, Li X, Wang R, Kang
Y, Xue X, Meng R, Wei Q and Feng X: Upregulation of circ-UBAP2
predicts poor prognosis and promotes triple-negative breast cancer
progression through the miR-661/MTA1 pathway. Biochem Biophys Res
Commun. 505:996–1002. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sheng M, Wei N, Yang HY, Yan M, Zhao QX
and Jing LJ: CircRNA UBAP2 promotes the progression of ovarian
cancer by sponging microRNA-144. Eur Rev Med Pharmacol Sci.
23:7283–7294. 2019.PubMed/NCBI
|
21
|
Zhang H, Wang G, Ding C, Liu P, Wang R,
Ding W, Tong D, Wu D, Li C, Wei Q, et al: Increased circular RNA
UBAP2 acts as a sponge of miR-143 to promote osteosarcoma
progression. Oncotarget. 8:61687–61697. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu H, Li W, Zhu S, Zhang D and Zhang M:
Circular RNA circUBAP2 regulates proliferation and invasion of
osteosarcoma cells through miR-641/YAP1 axis. Cancer Cell Int.
20:2232020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang Y, Zhang S, Xu Y, Zhang Y, Guan H, Li
X, Li Y and Wang Y: Upregulation of miR-192 inhibits cell growth
and invasion and induces cell apoptosis by targeting TCF7 in human
osteosarcoma. Tumour Biol. 37:15211–15220. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sun X, Xu Y, Zhang S, Li X and Wang Y,
Zhang Y, Zhao X, Li Y and Wang Y: MicroRNA-183 suppresses the
vitality, invasion and migration of human osteosarcoma cells by
targeting metastasis-associated protein 1. Exp Ther Med.
15:5058–5064. 2018.PubMed/NCBI
|
26
|
Gao S, Wang K and Wang X: miR-375
targeting autophagy-related 2B (ATG2B) suppresses autophagy and
tumorigenesis in cisplatin-resistant osteosarcoma cells. Neoplasma.
67:724–734. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Guo J, Zhao P, Liu Z, Li Z, Yuan Y, Zhang
X, Yu Z, Fang J and Xiao K: MiR-204-3p inhibited the proliferation
of bladder cancer cells via modulating lactate
dehydrogenase-mediated glycolysis. Front Oncol. 9:12422019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen PH, Chang CK, Shih CM, Cheng CH, Lin
CW, Lee CC, Liu AJ, Ho KH and Chen KC: The miR-204-3p-targeted
IGFBP2 pathway is involved in xanthohumol-induced glioma cell
apoptotic death. Neuropharmacology. 110:362–375. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mansoori B, Duijf PHG, Mohammadi A, Najafi
S, Roshani E, Shanehbandi D, Hajiasgharzadeh K, Shirjang S, Ditzel
HJ, Kazemi T, et al: Overexpression of HMGA2 in breast cancer
promotes cell proliferation, migration, invasion and stemness.
Expert Opin Ther Targets. 24:1–11. 2020. View Article : Google Scholar
|
30
|
Guo X, Shi J, Wen Y, Li M, Li Q, Li X and
Li J: Increased high-mobility group A2 correlates with lymph node
metastasis and prognosis of non-small cell lung cancer. Cancer
Biomark. 21:547–555. 2018. View Article : Google Scholar
|
31
|
Guo HH, Wang YZ, Zhang ZK, Li MZ, Tian XD
and Yang YM: High mobility group AT-hook 2 promotes tumorigenicity
of pancreatic cancer cells via upregulating ANLN. Exp Cell Res.
393:1120882020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Venkatesan N, Kandalam M, Pasricha G,
Sumantran V, Manfioletti G, Ono SJ, Reddy MA and Krishnakumar S:
Expression of high mobility group A2 protein in retinoblastoma and
its association with clinicopathologic features. J Pediatr Hematol
Oncol. 31:209–214. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zha L, Zhang J, Tang W, Zhang N, He M, Guo
Y and Wang Z: HMGA2 elicits EMT by activating the Wnt/β-catenin
pathway in gastric cancer. Dig Dis Sci. 58:724–733. 2013.
View Article : Google Scholar
|
34
|
Zhao XP, Zhang H, Jiao JY, Tang DX, Wu YL
and Pan CB: Overexpression of HMGA2 promotes tongue cancer
metastasis through EMT pathway. J Transl Med. 14:262016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hawsawi O, Henderson V, Burton LJ, Dougan
J, Nagappan P and Odero-Marah V: High mobility group A2 (HMGA2)
promotes EMT via MAPK pathway in prostate cancer. Biochem Biophys
Res Commun. 504:196–202. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang YD, Mao JD, Wang JF and Xu MQ:
MiR-590 suppresses proliferation and induces apoptosis in
pancreatic cancer by targeting high mobility group A2. Technol
Cancer Res Treat. Jun 26–2020.Epub ahead of print. View Article : Google Scholar
|
37
|
Huang WT, Zhang H, Jin Z, Li K, Hu C, Li
ML and Situ J: MiR-219-5p inhibits prostate cancer cell growth and
metastasis by targeting HMGA2. Eur Rev Med Pharmacol Sci.
24:4710–4718. 2020.PubMed/NCBI
|
38
|
Zhou ZG, Xu C, Dong Z, Wang YP, Duan JY
and Yan CQ: MiR-497 inhibits cell proliferation and invasion
ability by targeting HMGA2 in pancreatic ductal adenocarcinoma. Eur
Rev Med Pharmacol Sci. 24:122–129. 2020.PubMed/NCBI
|
39
|
Jiao D, Liu Y and Tian Z: microRNA-493
inhibits tongue squamous cell carcinoma oncogenicity via directly
targeting HMGA2. OncoTargets Ther. 12:6947–6959. 2019. View Article : Google Scholar
|
40
|
Sang Y, Chen B, Song X, Li Y, Liang Y, Han
D, Zhang N, Zhang H, Liu Y, Chen T, et al: circRNA_0025202
Regulates Tamoxifen Sensitivity and Tumor Progression via
Regulating the miR-182-5p/FOXO3a Axis in Breast Cancer. Mol Ther.
27:1638–1652. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Song T, Xu A, Zhang Z, Gao F, Zhao L, Chen
X, Gao J and Kong X: CircRNA hsa_circRNA_101996 increases cervical
cancer proliferation and invasion through activating TPX2
expression by restraining miR-8075. J Cell Physiol.
234:14296–14305. 2019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Xu JZ, Shaoao CC, Wanang XJ, Zhaoao X,
Chen JQ, Ouyanang YX, Feng J, Zhanang F, Huanuanuang WH, Yining Q,
et al: circTADA2As suppress breast cancer progression and
metastasis via targeting miR-203a-3p/SOCS3 axis. Cell Death Dis.
10:1752019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
44
|
Cates JM: Comparison of the AJCC, MSTS,
and modified spanier systems for clinical and pathologic staging of
osteosarcoma. Am J Surg Pathol. 41:405–413. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
He H, Zhao X, Zhu Z, Du L, Chen E, Liu S,
Li Q, Dong J, Yang J and Lei L: MicroRNA-3191 promotes migration
and invasion by downregulating TGFBR2 in colorectal cancer. J
Biochem Mol Toxicol. 33:e223082019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wang Y, Cheng N and Luo J: Downregulation
of lncRNA ANRIL represses tumorigenicity and enhances
cisplatin-induced cytotoxicity via regulating microRNA let-7a in
nasopharyngeal carcinoma. J Biochem Mol Toxicol. 31:e219042017.
View Article : Google Scholar
|
47
|
Li Z, Li Y, Li Y, Ren K, Li X, Han X and
Wang J: Long non-coding RNA H19 promotes the proliferation and
invasion of breast cancer through upregulating DNMT1 expression by
sponging miR-152. J Biochem Mol Toxicol. 31:e219332017. View Article : Google Scholar
|
48
|
Guan H, Mei Y, Mi Y, Li C, Sun X, Zhao X,
Liu J, Cao W, Li Y and Wang Y: Downregulation of lncRNA ANRIL
suppresses growth and metastasis in human osteosarcoma cells.
OncoTargets Ther. 11:4893–4899. 2018. View Article : Google Scholar
|
49
|
Guan H, Liu J, Lv P, Zhou L, Zhang J and
Cao W: MicroRNA 590 inhibits migration, invasion and epithelial to
mesenchymal transition of esophageal squamous cell carcinoma by
targeting low density lipoprotein receptor related protein 6. Oncol
Rep. 44:1385–1392. 2020.PubMed/NCBI
|
50
|
Guan H, Shang G, Cui Y, Liu J, Sun X, Cao
W, Wang Y and Li Y: Long noncoding RNA APTR contributes to
osteosarcoma progression through repression of miR-132-3p and
upregulation of yes-associated protein 1. J Cell Physiol.
234:8998–9007. 2019. View Article : Google Scholar
|
51
|
Gao PF, Huang D, Wen JY, Liu W and Zhang
HW: Advances in the role of exosomal non-coding RNA in the
development, diagnosis, and treatment of gastric cancer (Review).
Mol Clin Oncol. 13:101–108. 2020. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhang C, Huo ST, Wu Z, Chen L, Wen C, Chen
H, Du WW Wu N, Guan D, Lian S, et al: Rapid development of
targeting circRNAs in cardiovascular diseases. Mol Ther Nucleic
Acids. 21:568–576. 2020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Ma Y, Liu Y and Jiang Z: CircRNAs: A new
perspective of biomarkers in the nervous system. Biomed
Pharmacother. 128:1102512020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Filardi T, Catanzaro G, Mardente S, Zicari
A, Santangelo C, Lenzi A, Morano S and Ferretti E: Non-coding RNA:
Role in gestational diabetes pathophysiology and complications. Int
J Mol Sci. 21:40202020. View Article : Google Scholar :
|
55
|
Lodde V, Murgia G, Simula ER, Steri M,
Floris M and Idda ML: Long noncoding RNAs and circular RNAs in
autoimmune diseases. Biomolecules. 10:E10442020. View Article : Google Scholar : PubMed/NCBI
|
56
|
Hao Y, Xi J, Peng Y, Bian B, Hao G, Xi Y
and Zhang Z: Circular RNA Circ_0016760 modulates non-small-cell
lung cancer growth through the miR-577/ZBTB7A axis. Cancer Manag
Res. 12:5561–5574. 2020. View Article : Google Scholar : PubMed/NCBI
|
57
|
Wang K, Gan TY, Li N, Liu CY, Zhou LY, Gao
JN, Chen C, Yan KW, Ponnusamy M, Zhang YH, et al: Circular RNA
mediates cardiomyocyte death via miRNA-dependent upregu-lation of
MTP18 expression. Cell Death Differ. 24:1111–1120. 2017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Tan L, Wei X, Zheng L, Zeng J, Liu H, Yang
S and Tan H: Amplified HMGA2 promotes cell growth by regulating Akt
pathway in AML. J Cancer Res Clin Oncol. 142:389–399. 2016.
View Article : Google Scholar
|
59
|
Ikeda K, Ogawa K and Takeishi Y: The role
of HMGA2 in the proliferation and expansion of a hematopoietic cell
in myelopro-liferative neoplasms. Fukushima J Med Sci. 58:91–100.
2012. View Article : Google Scholar
|
60
|
Pallante P, Sepe R, Puca F and Fusco A:
High mobility group a proteins as tumor markers. Front Med
(Lausanne). 2:152015.
|
61
|
Mansoori B, Mohammadi A, Shirjang S and
Baradaran B: HMGI-C suppressing induces P53/caspase9 axis to
regulate apoptosis in breast adenocarcinoma cells. Cell Cycle.
15:2585–2592. 2016. View Article : Google Scholar : PubMed/NCBI
|