Self‑renewal signaling pathways and differentiation therapies of glioblastoma stem cells (Review)
- Authors:
- Jing Jin
- Florina Grigore
- Clark C. Chen
- Ming Li
-
Affiliations: Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China, Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA - Published online on: May 19, 2021 https://doi.org/10.3892/ijo.2021.5225
- Article Number: 45
This article is mentioned in:
Abstract
Prager BC, Bhargava S, Mahadev V, Hubert CG and Rich JN: Glioblastoma Stem Cells: Driving Resilience through Chaos. Trends Cancer. 6:223–235. 2020. View Article : Google Scholar : PubMed/NCBI | |
Weller M, Cloughesy T, Perry JR and Wick W: Standards of care for treatment of recurrent glioblastoma - are we there yet? Neuro Oncol. 15:4–27. 2013. View Article : Google Scholar | |
Jordan CT: Cancer stem cells: Controversial or just misunderstood? Cell Stem Cell. 4:203–205. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kondo T, Setoguchi T and Taga T: Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA. 101:781–786. 2004. View Article : Google Scholar : PubMed/NCBI | |
Choi SA, Lee JY, Phi JH, Wang KC, Park CK, Park SH and Kim SK: Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase. Eur J Cancer. 50:137–149. 2014. View Article : Google Scholar | |
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI | |
Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F and Vescovi A: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64:7011–7021. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wang H, Eyler CE, Hjelmeland AB and Rich JN: Turning cancer stem cells inside out: An exploration of glioma stem cell signaling pathways. J Biol Chem. 284:16705–16709. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Wu Q, Guryanova OA, Huang Z, Huang Q, Rich JN and Bao S: Elevated invasive potential of glioblastoma stem cells. Biochem Biophys Res Commun. 406:643–648. 2011. View Article : Google Scholar : PubMed/NCBI | |
Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, Hoffman RM and Kerbel RS: Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res. 69:7243–7251. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Bandyopadhyay A, Nichols RW, Wang L, Hinck AP, Wang S and Sun LZ: Blockade of Autocrine TGF-β signaling inhibits stem cell phenotype, survival, and metastasis of murine breast cancer cells. J Stem Cell Res Ther. 2:1–8. 2012. View Article : Google Scholar | |
Xi Q, Wang Z, Zaromytidou AI, Zhang XH, Chow-Tsang LF, Liu JX, Kim H, Barlas A, Manova-Todorova K, Kaartinen V, et al: A poised chromatin platform for TGF-β access to master regulators. Cell. 147:1511–1524. 2011. View Article : Google Scholar : PubMed/NCBI | |
Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: How cells read TGF-beta signals. Nat Rev Mol Cell Biol. 1:169–178. 2000. View Article : Google Scholar | |
Oshimori N and Fuchs E: The harmonies played by TGF-β in stem cell biology. Cell Stem Cell. 11:751–764. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Zhu F, Zhang H, Chen D, Zhang X, Gao Q and Li Y: Conditional ablation of TGF-β signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci Rep. 6:294792016. View Article : Google Scholar | |
Furuta Y, Piston DW and Hogan BL: Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development. 124:2203–2212. 1997. View Article : Google Scholar : PubMed/NCBI | |
Gilboa L, Nohe A, Geissendörfer T, Sebald W, Henis YI and Knaus P: Bone morphogenetic protein receptor complexes on the surface of live cells: A new oligomerization mode for serine/threonine kinase receptors. Mol Biol Cell. 11:1023–1035. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ: Identification of a novel member (GDF-1) of the transforming growth factor-beta superfamily. Mol Endocrinol. 4:1034–1040. 1990. View Article : Google Scholar : PubMed/NCBI | |
McPherron AC and Lee SJ: GDF-3 and GDF-9: Two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines. J Biol Chem. 268:3444–3449. 1993. View Article : Google Scholar : PubMed/NCBI | |
Rider CC and Mulloy B: Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J. 429:1–12. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chirasani SR, Sternjak A, Wend P, Momma S, Campos B, Herrmann IM, Graf D, Mitsiadis T, Herold-Mende C, Besser D, et al: Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells. Brain. 133:1961–1972. 2010. View Article : Google Scholar : PubMed/NCBI | |
Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F and Vescovi AL: Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 444:761–765. 2006. View Article : Google Scholar : PubMed/NCBI | |
Raja E, Komuro A, Tanabe R, Sakai S, Ino Y, Saito N, Todo T, Morikawa M, Aburatani H, Koinuma D, et al: Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene. 36:4963–4974. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tso JL, Yang S, Menjivar JC, Yamada K, Zhang Y, Hong I, Bui Y, Stream A, McBride WH, Liau LM, et al: Bone morphogenetic protein 7 sensitizes O6-methylguanine methyltransferase expressing-glioblastoma stem cells to clinically relevant dose of temozolomide. Mol Cancer. 14:1892015. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, Kotliarova S, Kotliarov Y, Walling J, Ahn S, et al: Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell. 13:69–80. 2008. View Article : Google Scholar : PubMed/NCBI | |
Namkoong H, Shin SM, Kim HK, Ha SA, Cho GW, Hur SY, Kim TE and Kim JW: The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein. BMC Cancer. 6:742006. View Article : Google Scholar : PubMed/NCBI | |
Yan K, Wu Q, Yan DH, Lee CH, Rahim N, Tritschler I, DeVecchio J, Kalady MF, Hjelmeland AB and Rich JN: Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Genes Dev. 28:1085–1100. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tate CM, Pallini R, Ricci-Vitiani L, Dowless M, Shiyanova T, D'Alessandris GQ, Morgante L, Giannetti S, Larocca LM, di Martino S, et al: A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells. Cell Death Differ. 19:1644–1654. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bruna A, Darken RS, Rojo F, Ocaña A, Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, et al: High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell. 11:147–160. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peñuelas S, Anido J, Prieto-Sánchez RM, Folch G, Barba I, Cuartas I, García-Dorado D, Poca MA, Sahuquillo J, Baselga J, et al: TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell. 15:315–327. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang HW, Menon LG, Black PM, Carroll RS and Johnson MD: SNAI2/Slug promotes growth and invasion in human gliomas. BMC Cancer. 10:3012010. View Article : Google Scholar : PubMed/NCBI | |
Savary K, Caglayan D, Caja L, Tzavlaki K, Bin Nayeem S, Bergström T, Jiang Y, Uhrbom L, Forsberg-Nilsson K, Westermark B, et al: Snail depletes the tumorigenic potential of glioblastoma. Oncogene. 32:5409–5420. 2013. View Article : Google Scholar : PubMed/NCBI | |
Caja L, Tzavlaki K, Dadras MS, Tan EJ, Hatem G, Maturi NP, Morén A, Wik L, Watanabe Y, Savary K, et al: Snail regulates BMP and TGFβ pathways to control the differentiation status of glioma-initiating cells. Oncogene. 37:2515–2531. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teh JL and Chen S: Glutamatergic signaling in cellular transformation. Pigment Cell Melanoma Res. 25:331–342. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ghosh D, Ulasov IV, Chen L, Harkins LE, Wallenborg K, Hothi P, Rostad S, Hood L and Cobbs CS: TGFβ-responsive HMOX1 expression is associated with stemness and invasion in glioblastoma multiforme. Stem Cells. 34:2276–2289. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han W, Xin Z, Zhao Z, Bao W, Lin X, Yin B, Zhao J, Yuan J, Qiang B and Peng X: RNA-binding protein PCBP2 modulates glioma growth by regulating FHL3. J Clin Invest. 123:2103–2118. 2013. View Article : Google Scholar : PubMed/NCBI | |
Han W, Hu P, Wu F, Wang S, Hu Y, Li S, Jiang T, Qiang B and Peng X: FHL3 links cell growth and self-renewal by modulating SOX4 in glioma. Cell Death Differ. 26:796–811. 2019. View Article : Google Scholar : | |
Bulstrode H, Johnstone E, Marques-Torrejon MA, Ferguson KM, Bressan RB, Blin C, Grant V, Gogolok S, Gangoso E, Gagrica S, et al: Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes Dev. 31:757–773. 2017. View Article : Google Scholar : PubMed/NCBI | |
Artavanis-Tsakonas S, Rand MD and Lake RJ: Notch signaling: Cell fate control and signal integration in development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI | |
Blaumueller CM, Qi H, Zagouras P and Artavanis-Tsakonas S: Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell. 90:281–291. 1997. View Article : Google Scholar : PubMed/NCBI | |
Stockhausen MT, Kristoffersen K and Poulsen HS: The functional role of Notch signaling in human gliomas. Neuro Oncol. 12:199–211. 2010. View Article : Google Scholar : PubMed/NCBI | |
Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R and McKay RD: Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 442:823–826. 2006. View Article : Google Scholar : PubMed/NCBI | |
Guichet PO, Guelfi S, Teigell M, Hoppe L, Bakalara N, Bauchet L, Duffau H, Lamszus K, Rothhut B and Hugnot JP: Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells. 33:21–34. 2015. View Article : Google Scholar | |
Kanamori M, Kawaguchi T, Nigro JM, Feuerstein BG, Berger MS, Miele L and Pieper RO: Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg. 106:417–427. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chowdhury S and Sarkar RR: Exploring Notch pathway to elucidate phenotypic plasticity and intra-tumor heterogeneity in fliomas. Sci Rep. 9:94882019. View Article : Google Scholar | |
Basak O, Giachino C, Fiorini E, Macdonald HR and Taylor V: Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state. J Neurosci. 32:5654–5666. 2012. View Article : Google Scholar : PubMed/NCBI | |
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ge W, Martinowich K, Wu X, He F, Miyamoto A, Fan G, Weinmaster G and Sun YE: Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J Neurosci Res. 69:848–860. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bansod S, Kageyama R and Ohtsuka T: Hes5 regulates the transition timing of neurogenesis and gliogenesis in mammalian neocortical development. Development. 144:3156–3167. 2017. View Article : Google Scholar : PubMed/NCBI | |
Armesilla-Diaz A, Bragado P, Del Valle I, Cuevas E, Lazaro I, Martin C, Cigudosa JC and Silva A: p53 regulates the self-renewal and differentiation of neural precursors. Neuroscience. 158:1378–1389. 2009. View Article : Google Scholar | |
Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, et al: NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 28:5–16. 2010. | |
Xu R, Shimizu F, Hovinga K, Beal K, Karimi S, Droms L, Peck KK, Gutin P, Iorgulescu JB, Kaley T, et al: Molecular and clinical effects of Notch inhibition in glioma patients: A phase 0/I trial. Clin Cancer Res. 22:4786–4796. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tanaka S, Nakada M, Yamada D, Nakano I, Todo T, Ino Y, Hoshii T, Tadokoro Y, Ohta K, Ali MA, et al: Strong therapeutic potential of γ-secretase inhibitor MRK003 for CD44-high and CD133-low glioblastoma initiating cells. J Neurooncol. 121:239–250. 2015. View Article : Google Scholar | |
Goldfarb DS, Corbett AH, Mason DA, Harreman MT and Adam SA: Importin alpha: A multipurpose nuclear-transport receptor. Trends Cell Biol. 14:505–514. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huenniger K, Krämer A, Soom M, Chang I, Köhler M, Depping R, Kehlenbach RH and Kaether C: Notch1 signaling is mediated by importins alpha 3, 4, and 7. Cell Mol Life Sci. 67:3187–3196. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Kong J, Tucker-Burden C, Anand M, Rong Y, Rahman F, Moreno CS, Van Meir EG, Hadjipanayis CG and Brat DJ: Human Brat ortholog TRIM3 is a tumor suppressor that regulates asymmetric cell division in glioblastoma. Cancer Res. 74:4536–4548. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Tucker-Burden C, Zhang C, Moberg K, Read R, Hadjipanayis C and Brat DJ: Drosophila brat and human ortholog TRIM3 maintain stem cell equilibrium and suppress brain tumorigenesis by attenuating Notch nuclear transport. Cancer Res. 76:2443–2452. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gagliardi F, Narayanan A, Reni M, Franzin A, Mazza E, Boari N, Bailo M, Zordan P and Mortini P: The role of CXCR4 in highly malignant human gliomas biology: Current knowledge and future directions. Glia. 62:1015–1023. 2014. View Article : Google Scholar : PubMed/NCBI | |
Calinescu AA, Yadav VN, Carballo E, Kadiyala P, Tran D, Zamler DB, Doherty R, Srikanth M, Lowenstein PR and Castro MG: Survival and proliferation of neural progenitor-derived glioblastomas under hypoxic stress is controlled by a CXCL12/CXCR4 autocrine-positive feedback mechanism. Clin Cancer Res. 23:1250–1262. 2017. View Article : Google Scholar | |
Yi L, Zhou X, Li T, Liu P, Hai L, Tong L, Ma H, Tao Z, Xie Y, Zhang C, et al: Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. J Exp Clin Cancer Res. 38:3392019. View Article : Google Scholar : PubMed/NCBI | |
Iso T, Kedes L and Hamamori Y: HES and HERP families: Multiple effectors of the Notch signaling pathway. J Cell Physiol. 194:237–255. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tay J and Richter JD: Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell. 1:201–213. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yin J, Park G, Lee JE, Park JY, Kim TH, Kim YJ, Lee SH, Yoo H, Kim JH and Park JB: CPEB1 modulates differentiation of glioma stem cells via downregulation of HES1 and SIRT1 expression. Oncotarget. 5:6756–6769. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iso T, Sartorelli V, Poizat C, Iezzi S, Wu HY, Chung G, Kedes L and Hamamori Y: HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol. 21:6080–6089. 2001. View Article : Google Scholar : PubMed/NCBI | |
Iso T, Sartorelli V, Chung G, Shichinohe T, Kedes L and Hamamori Y: HERP, a new primary target of Notch regulated by ligand binding. Mol Cell Biol. 21:6071–6079. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sokol SY: Maintaining embryonic stem cell pluripotency with Wnt signaling. Development. 138:4341–4350. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J and Nusse R: A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 382:225–230. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A and DiNardo S: arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature. 407:527–530. 2000. View Article : Google Scholar : PubMed/NCBI | |
Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B and Clevers H: Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science. 275:1784–1787. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hamada F and Bienz M: The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell. 7:677–685. 2004. View Article : Google Scholar : PubMed/NCBI | |
Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destrée O and Clevers H: XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 86:391–399. 1996. View Article : Google Scholar : PubMed/NCBI | |
Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R and Birchmeier W: Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 382:638–642. 1996. View Article : Google Scholar : PubMed/NCBI | |
Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG and Kemler R: Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev. 59:3–10. 1996. View Article : Google Scholar : PubMed/NCBI | |
Takahashi-Yanaga F and Kahn M: Targeting Wnt signaling: Can we safely eradicate cancer stem cells? Clin Cancer Res. 16:3153–3162. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rajakulendran N, Rowland KJ, Selvadurai HJ, Ahmadi M, Park NI, Naumenko S, Dolma S, Ward RJ, So M, Lee L, et al: Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells. Genes Dev. 33:498–510. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS and Pieper RO: Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res. 61:6674–6678. 2001.PubMed/NCBI | |
Morgan RG, Ridsdale J, Payne M, Heesom KJ, Wilson MC, Davidson A, Greenhough A, Davies S, Williams AC, Blair A, et al: LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells. Haematologica. 104:1365–1377. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z, Chen S, Yang Y, Wang S, Shen P, et al: CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of β-catenin/LEF1 complex via effects on chromatin remodeling. Mol Cancer. 18:1502019. View Article : Google Scholar | |
Brown DM and Ruoslahti E: Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell. 5:365–374. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hu B, Emdad L, Bacolod MD, Kegelman TP, Shen XN, Alzubi MA, Das SK, Sarkar D and Fisher PB: Astrocyte elevated gene-1 interacts with Akt isoform 2 to control glioma growth, survival, and pathogenesis. Cancer Res. 74:7321–7332. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu B, Emdad L, Kegelman TP, Shen XN, Das SK, Sarkar D and Fisher PB: Astrocyte elevated Gene-1 regulates β-catenin signaling to maintain glioma stem-like stemness and self-renewal. Mol Cancer Res. 15:225–233. 2017. View Article : Google Scholar | |
Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK and Moestrup SK: Identification of the haemoglobin scavenger receptor. Nature. 409:198–201. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ostuni R, Kratochvill F, Murray PJ and Natoli G: Macrophages and cancer: From mechanisms to therapeutic implications. Trends Immunol. 36:229–239. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Ping YF, Zhou W, He ZC, Chen C, Bian BS, Zhang L, Chen L, Lan X, Zhang XC, et al: Tumour-associated macro-phages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 8:150802017. View Article : Google Scholar | |
Ritter M, Buechler C, Kapinsky M and Schmitz G: Interaction of CD163 with the regulatory subunit of casein kinase II (CKII) and dependence of CD163 signaling on CKII and protein kinase C. Eur J Immunol. 31:999–1009. 2001. View Article : Google Scholar : PubMed/NCBI | |
Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F, Pinna LA and Ruzzene M: Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ. 12:668–677. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Chen J, Zhu Y, Li Y, Wang Y, Chen H, Wang J, Li X, Liu Y, Li B, et al: CD163, a novel therapeutic target, regulates the proliferation and stemness of glioma cells via casein kinase 2. Oncogene. 38:1183–1199. 2019. View Article : Google Scholar | |
Wang F, Wang AY, Chesnelong C, Yang Y, Nabbi A, Thalappilly S, Alekseev V and Riabowol K: ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways. Oncogene. 37:286–301. 2018. View Article : Google Scholar : | |
Zhu Q, Shen Y, Chen X, He J, Liu J and Zu X: Self-renewal signalling pathway inhibitors: Perspectives on therapeutic approaches for cancer stem cells. OncoTargets Ther. 13:525–540. 2020. View Article : Google Scholar | |
Handschumacher RE, Harding MW, Rice J, Drugge RJ and Speicher DW: Cyclophilin: A specific cytosolic binding protein for cyclosporin A. Science. 226:544–547. 1984. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Wang Q, Giang A, Cheng C, Soo C, Wang C, Liu L and Chiu R: Knockdown of CypA inhibits interleukin-8 (IL-8) and IL-8-mediated proliferation and tumor growth of glioblastoma cells through down-regulated NF-κB. J Neurooncol. 101:1–14. 2011. View Article : Google Scholar | |
Wang G, Shen J, Sun J, Jiang Z, Fan J, Wang H, Yu S, Long Y, Liu Y, Bao H, et al: Cyclophilin A maintains glioma-initiating cell stemness by regulating Wnt/β-catenin signaling. Clin Cancer Res. 23:6640–6649. 2017. View Article : Google Scholar : PubMed/NCBI | |
Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, et al: Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron. 39:937–950. 2003. View Article : Google Scholar : PubMed/NCBI | |
Micchelli CA, The I, Selva E, Mogila V and Perrimon N: Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development. 129:843–851. 2002. View Article : Google Scholar : PubMed/NCBI | |
Takebe N, Harris PJ, Warren RQ and Ivy SP: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 8:97–106. 2011. View Article : Google Scholar | |
Ruiz i Altaba A and Altaba A: Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development. 125:2203–2212. 1998. View Article : Google Scholar : PubMed/NCBI | |
Baylin SB and Jones PA: Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 8:a0195052016. View Article : Google Scholar : PubMed/NCBI | |
Marampon F, Megiorni F, Camero S, Crescioli C, McDowell HP, Sferra R, Vetuschi A, Pompili S, Ventura L, De Felice F, et al: HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells. Cancer Lett. 397:1–11. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Liu Y, Gao R, Yu H and Sun T: HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett. 415:164–176. 2018. View Article : Google Scholar | |
Auzmendi-Iriarte J, Saenz-Antoñanzas A, Mikelez-Alonso I, Carrasco-Garcia E, Tellaetxe-Abete M, Lawrie CH, Sampron N, Cortajarena AL and Matheu A: Characterization of a new small-molecule inhibitor of HDAC6 in glioblastoma. Cell Death Dis. 11:4172020. View Article : Google Scholar : PubMed/NCBI | |
Dolatabadi S, Jonasson E, Lindén M, Fereydouni B, Bäcksten K, Nilsson M, Martner A, Forootan A, Fagman H, Landberg G, et al: JAK-STAT signalling controls cancer stem cell properties including chemotherapy resistance in myxoid liposarcoma. Int J Cancer. 145:435–449. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Mukherjee S, Tucker-Burden C, Ross JL, Chau MJ, Kong J and Brat DJ: TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 11:280–294. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Zhou W, Cheng L, Chen C, Huang Z, Fang X, Wu Q, He Z, Xu S, Lathia JD, et al: Tetraspanin CD9 stabilizes gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote STAT3 activation in glioma stem cells. Cell Death Differ. 24:167–180. 2017. View Article : Google Scholar : | |
Lasorella A, Benezra R and Iavarone A: The ID proteins: Master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer. 14:77–91. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee JK, Chang N, Yoon Y, Yang H, Cho H, Kim E, Shin Y, Kang W, Oh YT, Mun GI, et al: USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro Oncol. 18:37–47. 2016. View Article : Google Scholar | |
Cook PJ, Thomas R, Kingsley PJ, Shimizu F, Montrose DC, Marnett LJ, Tabar VS, Dannenberg AJ and Benezra R: Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma. Neuro Oncol. 18:1379–1389. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Jeon HM, Jin X, Kim EJ, Yin J, Jeon HY, Sohn YW, Oh SY, Kim JK, Kim SH, et al: The ID1-CULLIN3 axis regulates intracellular SHH and WNT signaling in glioblastoma stem cells. Cell Rep. 16:1629–1641. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Jin X, Kim LJY, Dixit D, Jeon HY, Kim EJ, Kim JK, Lee SY, Yin J, Rich JN, et al: Inhibition of ID1-BMPR2 Intrinsic Signaling Sensitizes Glioma Stem Cells to Differentiation Therapy. Clin Cancer Res. 24:383–394. 2018. View Article : Google Scholar | |
Sareddy GR, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A and Vadlamudi RK: Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 36:2423–2434. 2017. View Article : Google Scholar : | |
Dali R, Verginelli F, Pramatarova A, Sladek R and Stifani S: Characterization of a FOXG1:TLE1 transcriptional network in glioblastoma-initiating cells. Mol Oncol. 12:775–787. 2018. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Dynamic regulation of stem cell specification and maintenance by hypoxia-inducible factors. Mol Aspects Med. 47-48:15–23. 2016. View Article : Google Scholar | |
Ong DST, Hu B, Ho YW, Sauvé CG, Bristow CA, Wang Q, Multani AS, Chen P, Nezi L, Jiang S, et al: PAF promotes stemness and radioresistance of glioma stem cells. Proc Natl Acad Sci USA. 114:E9086–E9095. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kwon SJ, Kwon OS, Kim KT, Go YH, Yu SI, Lee BH, Miyoshi H, Oh E, Cho SJ and Cha HJ: Role of MEK partner-1 in cancer stemness through MEK/ERK pathway in cancerous neural stem cells, expressing EGFRviii. Mol Cancer. 16:1402017. View Article : Google Scholar : PubMed/NCBI | |
Gravina GL, Mancini A, Colapietro A, Delle Monache S, Sferra R, Vitale F, Cristiano L, Martellucci S, Marampon F, Mattei V, et al: The small molecule Ephrin receptor inhibitor, glpg1790, reduces renewal capabilities of cancer stem cells, showing anti-tumour efficacy on preclinical glioblastoma models. Cancers (Basel). 11:3592019. View Article : Google Scholar | |
Bandey I, Chiou SH, Huang AP, Tsai JC and Tu PH: Progranulin promotes Temozolomide resistance of glioblastoma by orchestrating DNA repair and tumor stemness. Oncogene. 34:1853–1864. 2015. View Article : Google Scholar | |
Xu Q, Hu C, Zhu Y, Wang K, Lal B, Li L, Tang J, Wei S, Huang G, Xia S, et al: ShRNA-based POLD2 expression knockdown sensitizes glioblastoma to DNA-Damaging therapeutics. Cancer Lett. 482:126–135. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hitomi M, Deleyrolle LP, Mulkearns-Hubert EE, Jarrar A, Li M, Sinyuk M, Otvos B, Brunet S, Flavahan WA, Hubert CG, et al: Differential connexin function enhances self-renewal in glioblastoma. Cell Rep. 11:1031–1042. 2015. View Article : Google Scholar : PubMed/NCBI | |
Arrizabalaga O, Moreno-Cugnon L, Auzmendi-Iriarte J, Aldaz P, Ibanez de Caceres I, Garros-Regulez L, Moncho-Amor V, Torres-Bayona S, Pernía O, Pintado-Berninches L, et al: High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 6:4012017. View Article : Google Scholar : PubMed/NCBI | |
Degrauwe N, Schlumpf TB, Janiszewska M, Martin P, Cauderay A, Provero P, Riggi N, Suvà ML, Paro R and Stamenkovic I: The RNA binding protein IMP2 preserves glioblastoma stem cells by preventing let-7 target gene silencing. Cell Rep. 15:1634–1647. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iwamaru A, Szymanski S, Iwado E, Aoki H, Yokoyama T, Fokt I, Hess K, Conrad C, Madden T, Sawaya R, et al: A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene. 26:2435–2444. 2007. View Article : Google Scholar | |
Ott M, Kassab C, Marisetty A, Hashimoto Y, Wei J, Zamler D, Leu JS, Tomaszowski KH, Sabbagh A, Fang D, et al: Radiation with STAT3 blockade triggers dendritic cell-T cell interactions in the glioma microenvironment and therapeutic efficacy. Clin Cancer Res. 26:4983–4994. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lim D, Kim KS, Kim H, Ko KC, Song JJ, Choi JH, Shin M, Min JJ, Jeong JH and Choy HE: Anti-tumor activity of an immunotoxin (TGFα-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget. 8:37550–37560. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sampson JH, Akabani G, Archer GE, Berger MS, Coleman RE, Friedman AH, Friedman HS, Greer K, Herndon JE II, Kunwar S, et al: Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol. 10:320–329. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hau P, Jachimczak P, Schlingensiepen R, Schulmeyer F, Jauch T, Steinbrecher A, Brawanski A, Proescholdt M, Schlaier J, Buchroithner J, et al: Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides. 17:201–12. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rodon J, Carducci MA, Sepulveda-Sánchez JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I, Cleverly AL, et al: First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res. 21:553–560. 2015. View Article : Google Scholar | |
Zhang M, Lahn M and Huber PE: Translating the combination of TGFβ blockade and radiotherapy into clinical development in glioblastoma. OncoImmunology. 1:943–945. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Kleber S, Röhrich M, Timke C, Han N, Tuettenberg J, Martin-Villalba A, Debus J, Peschke P, Wirkner U, et al: Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res. 71:7155–7167. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pan E, Supko JG, Kaley TJ, Butowski NA, Cloughesy T, Jung J, Desideri S, Grossman S, Ye X and Park DM: Phase I study of RO4929097 with bevacizumab in patients with recurrent malignant glioma. J Neurooncol. 130:571–579. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yahyanejad S, King H, Iglesias VS, Granton PV, Barbeau LM, van Hoof SJ, Groot AJ, Habets R, Prickaerts J, Chalmers AJ, et al: NOTCH blockade combined with radiation therapy and temozolomide prolongs survival of orthotopic glioblastoma. Oncotarget. 7:41251–41264. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tolcher AW, Messersmith WA, Mikulski SM, Papadopoulos KP, Kwak EL, Gibbon DG, Patnaik A, Falchook GS, Dasari A, Shapiro GI, et al: Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J Clin Oncol. 30:2348–2353. 2012. View Article : Google Scholar : PubMed/NCBI | |
den Hollander MW, Bensch F, Glaudemans AW, Oude Munnink TH, Enting RH, den Dunnen WF, Heesters MA, Kruyt FA, Lub-de Hooge MN, Cees de Groot J, et al: TGF-β Antibody Uptake in Recurrent High-Grade Glioma Imaged with 89Zr-Fresolimumab PET. J Nucl Med. 56:1310–1314. 2015. View Article : Google Scholar : PubMed/NCBI |