1
|
Valko M, Rhodes CJ, Moncol J, Izakovic M
and Mazur M: Free radicals, metals and antioxidants in oxidative
stress-induced cancer. Chem Biol Interact. 160:1–40. 2006.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Bae YS, Kang SW, Seo MS, Baines IC, Tekle
E, Chock PB and Rhee SG: Epidermal growth factor (EGF)-induced
generation of hydrogen peroxide. Role in EGF receptor-mediated
tyrosine phosphorylation. J Biol Chem. 272:217–221. 1997.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Neufeld G, Cohen T, Gengrinovitch S and
Poltorak Z: Vascular endothelial growth factor (VEGF) and its
receptors. FASEB J. 13:9–22. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Esposito F, Chirico G, Montesano Gesualdi
N, Posadas I, Ammendola R, Russo T, Cirino G and Cimino F: Protein
kinase B activation by reactive oxygen species is independent of
tyrosine kinase receptor phosphorylation and requires SRC activity.
J Biol Chem. 278:20828–20834. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kyriakis JM and Avruch J: Mammalian
mitogen-activated protein kinase signal transduction pathways
activated by stress and inflammation. Physiol Rev. 81:807–869.
2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hsu TC, Young MR, Cmarik J and Colburn NH:
Activator protein 1 (AP-1)- and nuclear factor kappaB
(NF-kappaB)-dependent transcriptional events in carcinogenesis.
Free Radic Biol Med. 28:1338–1348. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brandes RP, Weissmann N and Schröder K:
Nox family NADPH oxidases: Molecular mechanisms of activation. Free
Radic Biol Med. 76:208–226. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cao J, Liu Z, Xu Q, Shi R and Zhang G:
Research progress in NADPH oxidase family in cardiovascular
diseases. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 44:1258–1267.
2019.In Chinese.
|
9
|
Sorce S, Stocker R, Seredenina T, Holmdahl
R, Aguzzi A, Chio A, Depaulis A, Heitz F, Olofsson P, Olsson T, et
al: NADPH oxidases as drug targets and biomarkers in
neurodegenerative diseases: What is the evidence? Free Radic Biol
Med. 112:387–396. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Makhezer N, Ben Khemis M, Liu D, Khichane
Y, Marzaioli V, Tlili A, Mojallali M, Pintard C, Letteron P,
Hurtado-Nedelec M, et al: NOX1-derived ROS drive the expression of
Lipocalin-2 in colonic epithelial cells in inflammatory conditions.
Mucosal Immunol. 12:117–131. 2019. View Article : Google Scholar
|
11
|
Ward PA and Hunninghake GW: Lung
inflammation and fibrosis. Am J Respir Crit Care Med.
157:S123–S129. 1998. View Article : Google Scholar : PubMed/NCBI
|
12
|
Juhasz A, Markel S, Gaur S, Liu H, Lu J,
Jiang G, Wu X, Antony S, Wu Y, Melillo G, et al: NADPH oxidase 1
supports proliferation of colon cancer cells by modulating reactive
oxygen species-dependent signal transduction. J Biol Chem.
292:7866–7887. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yamamoto T, Nakano H, Shiomi K, Wanibuchi
K, Masui H, Takahashi T, Urano Y and Kamata T: Identification and
characterization of a novel NADPH oxidase 1 (Nox1) inhibitor that
suppresses proliferation of colon and stomach cancer cells. Biol
Pharm Bull. 41:419–426. 2018. View Article : Google Scholar
|
14
|
Vaquero EC, Edderkaoui M, Pandol SJ,
Gukovsky I and Gukovskaya AS: Reactive oxygen species produced by
NAD(P) H oxidase inhibit apoptosis in pancreatic cancer cells. J
Biol Chem. 279:34643–34654. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Luxen S, Belinsky SA and Knaus UG:
Silencing of DUOX NADPH oxidases by promoter hypermethylation in
lung cancer. Cancer Res. 68:1037–1045. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Höll M, Koziel R, Schäfer G, Pircher H,
Pauck A, Hermann M, Klocker H, Jansen-Dürr P and Sampson N: ROS
signaling by NADPH oxidase 5 modulates the proliferation and
survival of prostate carcinoma cells. Mol Carcinog. 55:27–39. 2016.
View Article : Google Scholar :
|
17
|
Dho SH, Kim JY, Lee KP, Kwon ES, Lim JC,
Kim CJ, Jeong D and Kwon KS: STAT5A-mediated NOX5-L expression
promotes the proliferation and metastasis of breast cancer cells.
Exp Cell Res. 351:51–58. 2017. View Article : Google Scholar
|
18
|
Antony S, Jiang G, Wu Y, Meitzler JL,
Makhlouf HR, Haines DC, Butcher D, Hoon DS, Ji J, Zhang Y, et al:
NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates
normoxic HIF-1α and p27Kip1 expression in malignant
melanoma and other human tumors. Mol Carcinog. 56:2643–2662. 2017.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Kamiguti AS, Serrander L, Lin K, Harris
RJ, Cawley JC, Allsup DJ, Slupsky JR, Krause KH and Zuzel M:
Expression and activity of NOX5 in the circulating malignant B
cells of hairy cell leukemia. J Immunol. 175:8424–8430. 2005.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou X, Li D, Resnick MB, Wands J and Cao
W: NADPH oxidase NOX5-S and nuclear factor κB1 mediate acid-induced
microsomal prostaglandin E synthase-1 expression in Barrett's
esophageal adenocarcinoma cells. Mol Pharmacol. 83:978–990. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ashizawa N, Shimizu H, Sudo M, Furuya S,
Akaike H, Hosomura N, Kawaguchi Y, Amemiya H, Kawaida H, Inoue S,
et al: Clinical significance of NADPH oxidase 5 in human colon
cancer. Anticancer Res. 39:4405–4410. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
23
|
Maruyama S, Furuya S, Shiraishi K, Shimizu
H, Saito R, Akaike H, Hosomura N, Kawaguchi Y, Amemiya H, Kawaida
H, et al: Inhibition of apoptosis by miR-122-5p in
α-fetoprotein-producing gastric cancer. Oncol Rep. 41:2595–2600.
2019.PubMed/NCBI
|
24
|
Bedard K and Krause KH: The NOX family of
ROS-generating NADPH oxidases: Physiology and pathophysiology.
Physiol Rev. 87:245–313. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Laurent E, McCoy JW III, Macina RA, Liu W,
Cheng G, Robine S, Papkoff J and Lambeth JD: Nox1 is over-expressed
in human colon cancers and correlates with activating mutations in
K-Ras. Int J Cancer. 123:100–107. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang HP, Wang X, Gong LF, Chen WJ, Hao Z,
Feng SW, Wu YB, Ye T and Cai YK: Nox1 promotes colon cancer cell
metastasis via activation of the ADAM17 pathway. Eur Rev Med
Pharmacol Sci. 20:4474–4481. 2016.PubMed/NCBI
|
27
|
Fulton DJ: Nox5 and the regulation of
cellular function. Antioxid Redox Signal. 11:2443–2452. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bánfi B, Molnár G, Maturana A, Steger K,
Hegedûs B, Demaurex N and Krause KH: A Ca(2+)-activated NADPH
oxidase in testis, spleen, and lymph nodes. J Biol Chem.
276:37594–37601. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Montezano AC, Tsiropoulou S, Dulak-Lis M,
Harvey A, Camargo Lde L and Touyz RM: Redox signaling, Nox5 and
vascular remodeling in hypertension. Curr Opin Nephrol Hypertens.
24:425–433. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Holterman CE, Boisvert NC, Thibodeau JF,
Kamto E, Novakovic M, Abd-Elrahman KS, Ferguson SSG and Kennedy
CRJ: Podocyte NADPH oxidase 5 promotes renal inflammation regulated
by the toll-like receptor pathway. Antioxid Redox Signal.
30:1817–1830. 2019. View Article : Google Scholar
|
31
|
Marzaioli V, Hurtado-Nedelec M, Pintard C,
Tlili A, Marie JC, Monteiro RC, Gougerot-Pocidalo MA, Dang PM and
El-Benna J: NOX5 and p22phox are 2 novel regulators of human
monocytic differentiation into dendritic cells. Blood.
130:1734–1745. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Holterman CE, Thibodeau JF and Kennedy CR:
NADPH oxidase 5 and renal disease. Curr Opin Nephrol Hypertens.
24:81–87. 2015. View Article : Google Scholar
|
33
|
Montezano AC, De Lucca Camargo L, Persson
P, Rios FJ, Harvey AP, Anagnostopoulou A, Palacios R, Gandara ACP,
Alves-Lopes R, Neves KB, et al: NADPH oxidase 5 is a
pro-contractile nox isoform and a point of cross-talk for calcium
and redox signaling-implications in vascular function. J Am Heart
Assoc. 7:e0093882018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hong J, Li D and Cao W: Rho Kinase ROCK2
mediates acid-induced NADPH oxidase NOX5-S expression in human
esophageal adenocarcinoma cells. PLoS One. 11:e01497352016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Pandey D and Fulton DJ: Molecular
regulation of NADPH oxidase 5 via the MAPK pathway. Am J Physiol
Heart Circ Physiol. 300:H1336–H1344. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zheng CC, Hu HF, Hong P, Zhang QH, Xu WW,
He QY and Li B: Significance of integrin-linked kinase (ILK) in
tumorigenesis and its potential implication as a biomarker and
therapeutic target for human cancer. Am J Cancer Res. 9:186–197.
2019.PubMed/NCBI
|
37
|
Tsoumas D, Nikou S, Giannopoulou E,
Champeris Tsaniras S, Sirinian C, Maroulis I, Taraviras S, Zolota
V, Kalofonos HP and Bravou V: ILK Expression in colorectal cancer
is associated with EMT, cancer stem cell markers and
chemoresistance. Cancer Genomics Proteomics. 15:127–141.
2018.PubMed/NCBI
|
38
|
Smith HW and Marshall CJ: Regulation of
cell signalling by uPAR. Nat Rev Mol Cell Biol. 11:23–36. 2010.
View Article : Google Scholar
|
39
|
Collen D and Lijnen HR: Basic and clinical
aspects of fibrinolysis and thrombolysis. Blood. 78:3114–3124.
1991. View Article : Google Scholar : PubMed/NCBI
|
40
|
Halamkova J, Kiss I, Pavlovsky Z, Tomasek
J, Jarkovsky J, Cech Z, Tucek S, Hanakova L, Moulis M, Zavrelova J,
et al: Clinical significance of the plasminogen activator system in
relation to grade of tumor and treatment response in colorectal
carcinoma patients. Neoplasma. 58:377–385. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Herszényi L, Farinati F, Cardin R, István
G, Molnár LD, Hritz I, De Paoli M, Plebani M and Tulassay Z: Tumor
marker utility and prognostic relevance of cathepsin B, cathepsin
L, urokinase-type plasminogen activator, plasminogen activator
inhibitor type-1, CEA and CA 19-9 in colorectal cancer. BMC Cancer.
8:1942008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ossowski L and Aguirre-Ghiso JA: Urokinase
receptor and integrin partnership: Coordination of signaling for
cell adhesion, migration and growth. Curr Opin Cell Biol.
12:613–620. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Terada LS and Nwariaku FE: Escaping
anoikis through ROS: ANGPTL4 controls integrin signaling through
Nox1. Cancer Cell. 19:297–299. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sánchez-Santos A, Martínez-Hernández MG,
Contreras-Ramos A, Ortega-Camarillo C and Baiza-Gutman LA:
Hyperglycemia-induced mouse trophoblast spreading is mediated by
reactive oxygen species. Mol Reprod Dev. 85:303–315. 2018.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Kim SH, Kim KH, Yoo BC and Ku JL:
Induction of LGR5 by H2O2 treatment is associated with cell
proliferation via the JNK signaling pathway in colon cancer cells.
Int J Oncol. 41:1744–1750. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wu Y, Konaté MM, Lu J, Makhlouf H, Chuaqui
R, Antony S, Meitzler JL, Difilippantonio MJ, Liu H, Juhasz A, et
al: IL-4 and IL-17A cooperatively promote hydrogen peroxide
production, oxidative DNA damage, and upregulation of dual oxidase
2 in human colon and pancreatic cancer cells. J Immunol.
203:2532–2544. 2019. View Article : Google Scholar : PubMed/NCBI
|