1
|
Chen C and Lou T: Hypoxia inducible
factors in hepatocellular carcinoma. Oncotarget. 8:46691–46703.
2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
McKeown SR: Defining normoxia, physoxia
and hypoxia in tumours-implications for treatment response. Br J
Radiol. 87:201306762014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu Z, Tu K, Wang Y, Yao B, Li Q, Wang L,
Dou C, Liu Q and Zheng X: Hypoxia accelerates aggressiveness of
hepatocellular carcinoma cells involving oxidative stress,
epithelial-mesenchymal transition and non-canonical hedgehog
signaling. Cell Physiol Biochem. 44:1856–1868. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lau CK, Yang ZF, Ho DW, Ng MN, Yeoh GC,
Poon RT and Fan ST: An Akt/hypoxia-inducible
factor-1alpha/platelet-derived growth factor-BB autocrine loop
mediates hypoxia-induced chemoresistance in liver cancer cells and
tumorigenic hepatic progenitor cells. Clin Cancer Res.
15:3462–3471. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Koh MY, Spivak-Kroizman TR and Powis G:
HIF-1alpha and cancer therapy. Recent Results Cancer Res.
180:15–34. 2010. View Article : Google Scholar
|
6
|
Tang W and Zhao G: Small molecules
targeting HIF-1α pathway for cancer therapy in recent years. Bioorg
Med Chem. 28:1152352020. View Article : Google Scholar
|
7
|
Kargbo RB: Selective DYRK1A inhibitor for
the treatment of neurodegenerative diseases: Alzheimer, parkinson,
huntington, and down syndrome. ACS Med Chem Lett. 11:1795–1796.
2020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wegiel J, Gong CX and Hwang YW: The role
of DYRK1A in neurodegenerative diseases. FEBS J. 278:236–245. 2011.
View Article : Google Scholar :
|
9
|
Laham AJ, Saber-Ayad M and El-Awady R:
DYRK1A: A down syndrome-related dual protein kinase with a
versatile role in tumorigenesis. Cell Mol Life Sci. 78:603–619.
2021. View Article : Google Scholar
|
10
|
Luna J, Boni J, Cuatrecasas M, Bofill-De
Ros X, Núñez-Manchón E, Gironella M, Vaquero EC, Arbones ML, de la
Luna S and Fillat C: DYRK1A modulates c-MET in pancreatic ductal
adenocarcinoma to drive tumour growth. Gut. 68:1465–1476. 2019.
View Article : Google Scholar
|
11
|
Li YL, Ding K, Hu X, Wu LW, Zhou DM, Rao
MJ, Lin NM and Zhang C: DYRK1A inhibition suppresses STAT3/EGFR/Met
signalling and sensitizes EGFR wild-type NSCLC cells to AZD9291. J
Cell Mol Med. 23:7427–7437. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li Y, Zhou D, Xu S, Rao M, Zhang Z, Wu L,
Zhang C and Lin N: DYRK1A suppression restrains Mcl-1 expression
and sensitizes NSCLC cells to Bcl-2 inhibitors. Cancer Biol Med.
17:387–400. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lee SB, Frattini V, Bansal M, Castano AM,
Sherman D, Hutchinson K, Bruce JN, Califano A, Liu G, Cardozo T, et
al: An ID2-dependent mechanism for VHL inactivation in cancer.
Nature. 529:172–177. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dituri F, Scialpi R, Schmidt TA,
Frusciante M, Mancarella S, Lupo LG, Villa E and Giannelli G:
Proteoglycan-4 is correlated with longer survival in HCC patients
and enhances sorafenib and regorafenib effectiveness via CD44 in
vitro. Cell Death Dis. 11:9842020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Méndez-Blanco C, Fondevila F,
García-Palomo A, González-Gallego J and Mauriz JL: Sorafenib
resistance in hepatocarcinoma: Role of hypoxia-inducible factors.
Exp Mol Med. 50:1–9. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tutusaus A, Stefanovic M, Boix L, Cucarull
B, Zamora A, Blasco L, de Frutos PG, Reig M, Fernandez-Checa JC,
Marí M, et al: Antiapoptotic BCL-2 proteins determine
sorafenib/regorafenib resistance and BH3-mimetic efficacy in
hepatocellular carcinoma. Oncotarget. 9:16701–16717. 2018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G,
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al:
Integrative analysis of complex cancer genomics and clinical
profiles using the cBio-Portal. Sci Signal. 6:pl12013. View Article : Google Scholar
|
18
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: an open platform for exploring
multi-dimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Aguirre-Gamboa R, Gomez-Rueda H,
Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R,
Rodriguez-Barrientos A, Tamez-Peña JG and Treviño V: SurvExpress:
an online biomarker validation tool and database for cancer gene
expression data using survival analysis. PLoS One. 8:e742502013.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Carpenter RL and Lo HW: STAT3 target genes
relevant to human cancers. Cancers (Basel). 6:897–925. 2014.
View Article : Google Scholar
|
21
|
Rodríguez-Hernández MA, Chapresto-Garzón
R, Cadenas M, Navarro-Villarán E, Negrete M, Gómez-Bravo MA, Victor
VM, Padillo FJ and Muntané J: Differential effectiveness of
tyrosine kinase inhibitors in 2D/3D culture according to cell
differentiation, p53 status and mitochondrial respiration in liver
cancer cells. Cell Death Dis. 11:3392020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu LW, Zhou DM, Zhang ZY, Zhang JK, Zhu
HJ, Lin NM and Zhang C: Suppression of LSD1 enhances the cytotoxic
and apoptotic effects of regorafenib in hepatocellular carcinoma
cells. Biochem Biophys Res Commun. 512:852–858. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fernandez-Martinez P, Zahonero C and
Sanchez-Gomez P: DYRK1A: The double-edged kinase as a protagonist
in cell growth and tumorigenesis. Mol Cell Oncol. 2:e9700482015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Li L, Wei JR, Song Y, Fang S, Du Y, Li Z,
Zeng TT, Zhu YH, Li Y and Guan XY: TROAP switches DYRK1 activity to
drive hepatocellular carcinoma progression. Cell Death Dis.
12:1252021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang Z, Yao L, Yang J, Wang Z and Du G:
PI3K/Akt and HIF1 signaling pathway in hypoxia-ischemia (review).
Mol Med Rep. 18:3547–3554. 2018.PubMed/NCBI
|
26
|
Kim HS, Kang YH, Lee J, Han SR, Kim DB, Ko
H, Park S and Lee MS: Biphasic regulation of mitogen-activated
protein kinase phosphatase 3 in hypoxic colon cancer cells. Mol
Cells. 44:710–722. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Juengpanich S, Topatana W, Lu C,
Staiculescu D, Li S, Cao J, Lin J, Hu J, Chen M, Chen J and Cai X:
Role of cellular, molecular and tumor microenvironment in
hepatocellular carcinoma: Possible targets and future directions in
the regorafenib era. Int J Cancer. 147:1778–1792. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liang C, Dong Z, Cai X, Shen J, Xu Y,
Zhang M, Li H, Yu W and Chen W: Hypoxia induces sorafenib
resistance mediated by autophagy via activating FOXO3a in
hepatocellular carcinoma. Cell Death Dis. 11:10172020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tomida C, Aibara K, Yamagishi N, Yano C,
Nagano H, Abe T, Ohno A, Hirasaka K, Nikawa T and Teshima-Kondo S:
The malignant progression effects of regorafenib in human colon
cancer cells. J Med Invest. 62:195–198. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Suk FM, Liu CL, Hsu MH, Chuang YT, Wang JP
and Liao YJ: Treatment with a new benzimidazole derivative bearing
a pyrrolidine side chain overcomes sorafenib resistance in
hepatocellular carcinoma. Sci Rep. 9:172592019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rüben K, Wurzlbauer A, Walte A, Sippl W,
Bracher F and Becker W: Selectivity profiling and biological
activity of novel β-carbolines as potent and selective DYRK1 kinase
inhibitors. PLoS One. 10:e01324532015. View Article : Google Scholar
|
32
|
Göckler N, Jofre G, Papadopoulos C, Soppa
U, Tejedor FJ and Becker W: Harmine specifically inhibits protein
kinase DYRK1A and interferes with neurite formation. FEBS J.
276:6324–6337. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bhansali RS, Rammohan M, Lee P, Laurent
AP, Wen Q, Suraneni P, Yip BH, Tsai YC, Jenni S, Bornhauser B, et
al: DYRK1A regulates B cell acute lymphoblastic leukemia through
phosphorylation of FOXO1 and STAT3. J Clin Invest. 131:e1359372021.
View Article : Google Scholar :
|
34
|
Wiechmann S, Czajkowska H, de Graaf K,
Grötzinger J, Joost HG and Becker W: Unusual function of the
activation loop in the protein kinase DYRK1A. Biochem Biophys Res
Commun. 302:403–408. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pawlus MR, Wang L and Hu CJ: STAT3 and
HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and
RCC4 cells. Oncogene. 33:1670–1679. 2014. View Article : Google Scholar
|