1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Agrawal N, Frederick MJ, Pickering CR,
Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, et
al: Exome sequencing of head and neck squamous cell carcinoma
reveals inactivating mutations in NOTCH1. Science. 333:1154–1157.
2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Stransky N, Egloff AM, Tward AD, Kostic
AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C,
McKenna A, et al: The mutational landscape of head and neck
squamous cell carcinoma. Science. 333:1157–1160. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang X and Sun Q: TP53 mutations,
expression and interaction networks in human cancers. Oncotarget.
8:624–643. 2017. View Article : Google Scholar :
|
5
|
Scheffner M, Werness BA, Huibregtse JM,
Levine AJ and Howley PM: The E6 oncoprotein encoded by human
papillomavirus types 16 and 18 promotes the degradation of p53.
Cell. 63:1129–1136. 1990. View Article : Google Scholar : PubMed/NCBI
|
6
|
Indovina P and Giordano A: Targeting the
checkpoint kinase WEE1: Selective sensitization of cancer cells to
DNA-damaging drugs. Cancer Biol Ther. 9:523–525. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hirai H, Arai T, Okada M, Nishibata T,
Kobayashi M, Sakai N, Imagaki K, Ohtani J, Sakai T, Yoshizumi T, et
al: MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor
efficacy of various DNA-damaging agents, including 5-fluorouracil.
Cancer Biol Ther. 9:514–522. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Den Haese GJ, Walworth N, Carr AM and
Gould KL: The Wee1 protein kinase regulates T14 phosphorylation of
fission yeast Cdc2. Mol Biol Cell. 6:371–385. 1995. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K
and Linn S: Molecular mechanisms of mammalian DNA repair and the
DNA damage checkpoints. Annu Rev Biochem. 73:39–85. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Castedo M, Perfettini JL, Roumier T,
Andreau K, Medema R and Kroemer G: Cell death by mitotic
catastrophe: A molecular definition. Oncogene. 23:2825–2837. 2004.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Vitale I, Galluzzi L, Castedo M and
Kroemer G: Mitotic catastrophe: A mechanism for avoiding genomic
instability. Nat Rev Mol Cell Biol. 12:385–392. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Meng X, Bi J, Li Y, Yang S, Zhang Y, Li M,
Liu H, Li Y, McDonald ME, Thiel KW, et al: AZD1775 increases
sensitivity to olaparib and gemcitabine in cancer cells with p53
mutations. Cancers (Basel). 10:1492018. View Article : Google Scholar
|
13
|
Lin X, Chen D, Zhang C, Zhang X, Li Z,
Dong B, Gao J and Shen L: Augmented antitumor activity by olaparib
plus AZD1775 in gastric cancer through disrupting DNA damage repair
pathways and DNA damage checkpoint. J Exp Clin Cancer Res.
37:1292018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Prystowsky MB, Adomako A, Smith RV,
Kawachi N, McKimpson W, Atadja P, Chen Q, Schlecht NF, Parish JL,
Childs G, et al: The histone deacetylase inhibitor LBH589 inhibits
expression of mitotic genes causing G2/M arrest and cell death in
head and neck squamous cell carcinoma cell lines. J Pathol.
218:467–477. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Iglesias-Linares A, Yañez-Vico RM and
González-Moles MA: Potential role of HDAC inhibitors in cancer
therapy: Insights into oral squamous cell carcinoma. Oral Oncol.
46:323–329. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu YS, Kashida Y, Kulp SK, Wang YC, Wang
D, Hung JH, Tang M, Lin ZZ, Chen TJ, Cheng AL, et al: Efficacy of a
novel histone deacetylase inhibitor in murine models of
hepatocellular carcinoma. Hepatology. 46:1119–1130. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Ozaki K, Kishikawa F, Tanaka M, Sakamoto
T, Tanimura S and Kohno M: Histone deacetylase inhibitors enhance
the chemosensitivity of tumor cells with cross-resistance to a wide
range of DNA-damaging drugs. Cancer Sci. 99:376–384. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ji M, Li Z, Lin Z and Chen L: Antitumor
activity of the novel HDAC inhibitor CUDC-101 combined with
gemcitabine in pancreatic cancer. Am J Cancer Res. 8:2402–2418.
2018.
|
19
|
Zhou L, Zhang Y, Chen S, Kmieciak M, Leng
Y, Lin H, Rizzo KA, Dumur CI, Ferreira-Gonzalez A, Dai Y and Grant
S: A regimen combining the Wee1 inhibitor AZD1775 with HDAC
inhibitors targets human acute myeloid leukemia cells harboring
various genetic mutations. Leukemia. 29:807–818. 2015. View Article : Google Scholar :
|
20
|
Qi W, Zhang W, Edwards H, Chu R,
Madlambayan GJ, Taub JW, Wang Z, Wang Y, Li C, Lin H and Ge Y:
Synergistic anti-leukemic interactions between panobinostat and
MK-1775 in acute myeloid leukemia ex vivo. Cancer Biol Ther.
16:1784–1793. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tanaka N, Patel AA, Tang L, Silver NL,
Lindemann A, Takahashi H, Jaksik R, Rao X, Kalu NN, Chen TC, et al:
Replication stress leading to apoptosis within the S-phase
contributes to synergism between vorinostat and AZD1775 in HNSCC
harboring high-risk TP53 mutation. Clin Cancer Res. 23:6541–6554.
2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hattori K, Takano N, Kazama H, Moriya S,
Miyake K, Hiramoto M, Tsukahara K and Miyazawa K: Synergistic
non-apoptotic cell death induction by simultaneously targeting
proteasome with bortezomib and HDAC6 with ricolinostat in head and
neck tumor cells. Oncol Lett. 22:6802021. View Article : Google Scholar
|
23
|
Wickström SA, Masoumi KC, Khochbin S,
Fässler R and Massoumi R: CYLD negatively regulates cell-cycle
progression by inactivating HDAC6 and increasing the levels of
acetylated tubulin. Embo J. 29:131–144. 2010. View Article : Google Scholar
|
24
|
Kim IA, No M, Lee JM, Shin JH, Oh JS, Choi
EJ, Kim IH, Atadja P and Bernhard EJ: Epigenetic modulation of
radiation response in human cancer cells with activated EGFR or
HER-2 signaling: Potential role of histone deacetylase 6. Radiother
Oncol. 92:125–132. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Namdar M, Perez G, Ngo L and Marks PA:
Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA
damage and sensitizes transformed cells to anticancer agents. Proc
Natl Acad Sci USA. 107:20003–20008. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang L, Xiang S, Williams KA, Dong H, Bai
W, Nicosia SV, Khochbin S, Bepler G and Zhang X: Depletion of HDAC6
enhances cisplatin-induced DNA damage and apoptosis in non-small
cell lung cancer cells. PLoS One. 7:e442652012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Toriyama K, Takano N, Kokuba H, Kazama H,
Moriya S, Hiramoto M, Abe S and Miyazawa K: Azithromycin enhances
the cytotoxicity of DNA-damaging drugs via lysosomal membrane
permeabilization in lung cancer cells. Cancer Sci. 112:3324–3337.
2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pemble H, Kumar P, van Haren J and
Wittmann T: GSK3-mediated CLASP2 phosphorylation modulates
kinetochore dynamics. J Cell Sci. 130:1404–1412. 2017.PubMed/NCBI
|
29
|
Spangle JM, Ghosh-Choudhury N and Munger
K: Activation of cap-dependent translation by mucosal human
papillomavirus E6 proteins is dependent on the integrity of the
LXXLL binding motif. J Virol. 86:7466–7472. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Szalai P and Engedal N: An image-based
assay for high-throughput analysis of cell proliferation and cell
death of adherent cells. Bio-protocol. 8:e28352018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Vakifahmetoglu H, Olsson M and Zhivotovsky
B: Death through a tragedy: Mitotic catastrophe. Cell Death Differ.
15:1153–1162. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ghelli Luserna di Rorà A, Cerchione C,
Martinelli G and Simonetti G: A WEE1 family business: Regulation of
mitosis, cancer progression, and therapeutic target. J Hematol
Oncol. 13:1262020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Santo L, Hideshima T, Kung AL, Tseng JC,
Tamang D, Yang M, Jarpe M, van Duzer JH, Mazitschek R, Ogier WC, et
al: Preclinical activity, pharmacodynamic, and pharmacokinetic
properties of a selective HDAC6 inhibitor, ACY-1215, in combination
with bortezomib in multiple myeloma. Blood. 119:2579–2589. 2012.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen X, Low KH, Alexander A, Jiang Y,
Karakas C, Hess KR, Carey JP, Bui TN, Vijayaraghavan S, Evans KW,
et al: Cyclin E overexpression sensitizes triple-negative breast
cancer to Wee1 kinase inhibition. Clin Cancer Res. 24:6594–6610.
2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Young LA, O'Connor LO, de Renty C,
Veldman-Jones MH, Dorval T, Wilson Z, Jones DR, Lawson D, Odedra R,
Maya-Mendoza A, et al: Differential activity of ATR and WEE1
inhibitors in a highly sensitive subpopulation of DLBCL linked to
replication stress. Cancer Res. 79:3762–3775. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Do K, Doroshow JH and Kummar S: Wee1
kinase as a target for cancer therapy. Cell Cycle. 12:3159–3164.
2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cuneo KC, Morgan MA, Sahai V, Schipper MJ,
Parsels LA, Parsels JD, Devasia T, Al-Hawaray M, Cho CS, Nathan H,
et al: Dose escalation trial of the Wee1 inhibitor Adavosertib
(AZD1775) in combination with gemcitabine and radiation for
patients with locally advanced pancreatic cancer. J Clin Oncol.
37:2643–2650. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Leijen S, van Geel RM, Sonke GS, de Jong
D, Rosenberg EH, Marchetti S, Pluim D, van Werkhoven E, Rose S, Lee
MA, et al: Phase II study of WEE1 inhibitor AZD1775 plus
carboplatin in patients with TP53-mutated ovarian cancer refractory
or resistant to first-line therapy within 3 months. J Clin Oncol.
34:4354–4361. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lheureux S, Cabanero M, Cristea MC,
Mantia-Smaldone G, Olawaiye A, Ellard S, Weberpals JI, Hendrickson
AEW, Fleming GF, Welch S, et al: A randomized double-blind
placebo-controlled phase II trial comparing gemcitabine monotherapy
to gemcitabine in combination with adavosertib in women with
recurrent, platinum resistant epithelial ovarian cancer: A trial of
the Princess Margaret, California, Chicago and Mayo Phase II
Consortia. J Clin Oncol. 37:5518. 2019. View Article : Google Scholar
|
40
|
Oza AM, Estevez-Diz M, Grischke EM, Hall
M, Marmé F, Provencher D, Uyar D, Weberpals JI, Wenham RM, Laing N,
et al: A Biomarker-enriched, randomized phase II trial of
adavosertib (AZD1775) plus paclitaxel and carboplatin for women
with platinum-sensitive TP53-mutant ovarian cancer. Clin Cancer
Res. 26:4767–4776. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu JF, Xiong N, Campos SM, Wright AA,
Krasner C, Schumer S, Horowitz N, Veneris J, Tayob N, Morrissey S,
et al: Phase II study of the WEE1 inhibitor adavosertib in
recurrent uterine serous carcinoma. J Clin Oncol. 39:1531–1539.
2021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ku BM, Bae YH, Koh J, Sun JM, Lee SH, Ahn
JS, Park K and Ahn MJ: Mutational status of TP53 defines the
efficacy of Wee1 inhibitor AZD1775 in KRAS-mutant non-small cell
lung cancer. Oncotarget. 8:67526–67537. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kreahling JM, Foroutan P, Reed D, Martinez
G, Razabdouski T, Bui MM, Raghavan M, Letson D, Gillies RJ and
Altiok S: Wee1 inhibition by MK-1775 leads to tumor inhibition and
enhances efficacy of gemcitabine in human sarcomas. PLoS One.
8:e575232013.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
44
|
Moses N, Zhang M, Wu JY, Hu C, Xiang S,
Geng X, Chen Y, Bai W, Zhang YW, Bepler G and Zhang XM: HDAC6
regulates radiosensitivity of non-small cell lung cancer by
promoting degradation of Chk1. Cells. 9:22372020. View Article : Google Scholar :
|
45
|
Hubbert C, Guardiola A, Shao R, Kawaguchi
Y, Ito A, Nixon A, Yoshida M, Wang XF and Yao TP: HDAC6 is a
microtubule-associated deacetylase. Nature. 417:455–458. 2002.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Kovacs JJ, Murphy PJ, Gaillard S, Zhao X,
Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB and Yao TP: HDAC6
regulates Hsp90 acetylation and chaperone-dependent activation of
glucocorticoid receptor. Mol Cell. 18:601–607. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang X, Yuan Z, Zhang Y, Yong S,
Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang XJ, Dent SR,
et al: HDAC6 modulates cell motility by altering the acetylation
level of cortactin. Mol Cell. 27:197–213. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lee YS, Lim KH, Guo X, Kawaguchi Y, Gao Y,
Barrientos T, Ordentlich P, Wang XF, Counter CM and Yao TP: The
cytoplasmic deacetylase HDAC6 is required for efficient oncogenic
tumorigenesis. Cancer Res. 68:7561–7569. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lernoux M, Schnekenburger M, Dicato M and
Diederich M: Anti-cancer effects of naturally derived compounds
targeting histone deacetylase 6-related pathways. Pharmacol Res.
129:337–356. 2018. View Article : Google Scholar
|
50
|
Bradbury CA, Khanim FL, Hayden R, Bunce
CM, White DA, Drayson MT, Craddock C and Turner BM: Histone
deacetylases in acute myeloid leukaemia show a distinctive pattern
of expression that changes selectively in response to deacetylase
inhibitors. Leukemia. 19:1751–1759. 2005. View Article : Google Scholar : PubMed/NCBI
|
51
|
Sakuma T, Uzawa K, Onda T, Shiiba M, Yokoe
H, Shibahara T and Tanzawa H: Aberrant expression of histone
deacetylase 6 in oral squamous cell carcinoma. Int J Oncol.
29:117–124. 2006.PubMed/NCBI
|
52
|
Bazzaro M, Lin Z, Santillan A, Lee MK,
Wang MC, Chan KC, Bristow RE, Mazitschek R, Bradner J and Roden RB:
Ubiquitin proteasome system stress underlies synergistic killing of
ovarian cancer cells by bortezomib and a novel HDAC6 inhibitor.
Clin Cancer Res. 14:7340–7347. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Cao J, Lv W, Wang L, Xu J, Yuan P, Huang
S, He Z and Hu J: Ricolinostat (ACY-1215) suppresses proliferation
and promotes apoptosis in esophageal squamous cell carcinoma via
miR-30d/PI3K/AKT/mTOR and ERK pathways. Cell Death Dis. 9:8172018.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Kanno K, Kanno S, Nitta H, Uesugi N, Sugai
T, Masuda T, Wakabayashi G and Maesawa C: Overexpression of histone
deacetylase 6 contributes to accelerated migration and invasion
activity of hepatocellular carcinoma cells. Oncol Rep. 28:867–873.
2012. View Article : Google Scholar : PubMed/NCBI
|
55
|
Chuang MJ, Wu ST, Tang SH, Lai XM, Lai HC,
Hsu KH, Sun KH, Sun GH, Chang SY, Yu DS, et al: The HDAC inhibitor
LBH589 induces ERK-dependent prometaphase arrest in prostate cancer
via HDAC6 inactivation and down-regulation. PLoS One. 8:e734012013.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Vicente JJ and Wordeman L: The
quantification and regulation of microtubule dynamics in the
mitotic spindle. Curr Opin Cell Biol. 60:36–43. 2019. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ling L, Hu F, Ying X, Ge J and Wang Q:
HDAC6 inhibition disrupts maturational progression and meiotic
apparatus assembly in mouse oocytes. Cell Cycle. 17:550–556. 2018.
View Article : Google Scholar :
|