1
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar
|
3
|
Shi Q, Paul J and Grothey A: Duration of
adjuvant chemotherapy for stage III colon cancer. N Engl J Med.
379:396–397. 2018.
|
4
|
Dienstmann R, Vermeulen L, Guinney J,
Kopetz S, Tejpar S and Tabernero J: Consensus molecular subtypes
and the evolution of precision medicine in colorectal cancer. Nat
Rev Cancer. 17:79–92. 2017. View Article : Google Scholar
|
5
|
Labianca R, Beretta GD, Kildani B, Milesi
L, Merlin F, Mosconi S, Pessi MA, Prochilo T, Quadri A, Gatta G, et
al: Colon cancer. Crit Rev Oncol Hematol. 74:106–133. 2010.
View Article : Google Scholar
|
6
|
Vodenkova S, Buchler T, Cervena K,
Veskrnova V, Vodicka P and Vymetalkova V: 5-fluorouracil and other
fluoropyrimidines in colorectal cancer: Past, present and future.
Pharmacol Ther. 206:1074472020. View Article : Google Scholar
|
7
|
Marin JJG, Macias RIR, Monte MJ, Her raez
E, Peleteiro-Vigil A, Blas BS, Sanchon-Sanchez P, Temprano AG,
Espinosa-Escudero RA, Lozano E, et al: Cellular mechanisms
accounting for the refractoriness of colorectal carcinoma to
pharmacological treatment. Cancers (Basel). 12:26052020. View Article : Google Scholar
|
8
|
Lucena-Cacace A, Otero-Albiol D,
Jiménez-García MP, Muñoz-Galvan S and Carnero A: NAMPT is a potent
oncogene in colon cancer progression that modulates cancer stem
cell properties and resistance to therapy through Sirt1 and PARP.
Clin Cancer Res. 24:1202–1215. 2018. View Article : Google Scholar
|
9
|
Fukuhara A, Matsuda M, Nishizawa M, Segawa
K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T,
Murakami H, et al: Visfatin: A protein secreted by visceral fat
that mimics the effects of insulin. Science. 307:426–430. 2005.
View Article : Google Scholar
|
10
|
Hufton SE, Moerkerk PT, Brandwijk R, de
Bruïne AP, Arends JW and Hoogenboom HR: A profile of differentially
expressed genes in primary colorectal cancer using suppression
subtractive hybridization. FEBS Lett. 463:77–82. 1999. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nakajima TE, Yamada Y, Hamano T, Furuta K,
Matsuda T, Fujita S, Kato K, Hamaguchi T and Shimada Y:
Adipocytokines as new promising markers of colorectal tumors:
Adiponectin for colorectal adenoma, and resistin and visfatin for
colorectal cancer. Cancer Sci. 101:1286–1291. 2010. View Article : Google Scholar
|
12
|
Lucena-Cacace A, Otero-Albiol D,
Jiménez-García MP, Peinado-Serrano J and Carnero A: NAMPT
overexpression induces cancer stemness and defines a novel tumor
signature for glioma prognosis. Oncotarget. 8:99514–99530. 2017.
View Article : Google Scholar
|
13
|
Chen M, Wang Y, Li Y, Zhao L, Ye S, Wang
S, Yu C and Xie H: Association of plasma visfatin with risk of
colorectal cancer: An observational study of Chinese patients. Asia
Pac J Clin Oncol. 12:e65–74. 2016. View Article : Google Scholar
|
14
|
Lucas S, Soave C, Nabil G, Ahmed ZSO, Chen
G, El-Banna HA, Dou QP and Wang J: Pharmacological inhibitors of
NAD biosynthesis as potential an ticancer agents. Recent Pat
Anticancer Drug Discov. 12:190–207. 2017. View Article : Google Scholar
|
15
|
Nacarelli T, Fukumoto T, Zundell JA,
Fatkhutdinov N, Jean S, Cadungog MG, Borowsky ME and Zhang R: NAMPT
inhibition suppresses cancer stem-like cells associated with
therapy-induced senescence in ovarian cancer. Cancer Res.
80:890–900. 2020. View Article : Google Scholar
|
16
|
Cao Z, Liang N, Yang H and Li S: Visfatin
mediates doxorubicin resistance in human non-small-cell lung cancer
via Akt-mediated up-regulation of ABCC1. Cell Prolif.
50:e123662017. View Article : Google Scholar
|
17
|
Ge X, Zhao Y, Dong L, Seng J, Zhang X and
Dou D: NAMPT regulates PKM2 nuclear location through 14-3-3ζ:
Conferring resistance to tamoxifen in breast cancer. J Cell
Physiol. 234:23409–23420. 2019. View Article : Google Scholar
|
18
|
Bi TQ and Che XM: Nampt/PBEF/visfatin and
cancer. Cancer Biol Ther. 10:119–125. 2010. View Article : Google Scholar
|
19
|
Li XQ, Lei J, Mao LH, Wang QL, Xu F, Ran
T, Zhou ZH and He S: NAMPT and NAPRT, key enzymes in NAD salvage
synthesis pathway, are of negative prognostic value in colorectal
cancer. Front Oncol. 9:7362019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ma J, Sun X and Wang Y, Chen B, Qian L and
Wang Y: Fibroblast-derived CXCL12 regulates PTEN expression and is
associated with the proliferation and invasion of colon cancer
cells via PI3k/Akt signaling. Cell Commun Signal. 17:1192019.
View Article : Google Scholar
|
21
|
Ma J, Su H, Yu B, Guo T, Gong Z, Qi J,
Zhao X and Du J: CXCL12 gene silencing down-regulates metastatic
potential via blockage of MAPK/PI3K/AP-1 signaling pathway in colon
cancer. Clin Transl Oncol. 20:1035–1045. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Conley-LaComb MK, Saliganan A, Kandagatla
P, Chen YQ, Cher ML and Chinni SR: PTEN loss mediated Akt
activation promotes prostate tumor growth and metastasis via
CXCL12/CXCR4 signaling. Mol Cancer. 12:852013. View Article : Google Scholar
|
23
|
Zhao Q, Li JY, Zhang J, Long YX, Li YJ,
Guo XD, Wei MN and Liu WJ: Role of visfatin in promoting
proliferation and invasion of colorectal cancer cells by
downregulating SDF-1/CXCR4-mediated miR-140-3p expression. Eur Rev
Med Pharmacol Sci. 24:5367–5377. 2020.
|
24
|
Azim HA Jr, Peccatori FA, Brohée S,
Branstetter D, Loi S, Viale G, Piccart M, Dougall WC, Pruneri G and
Sotiriou C: RANK-ligand (RANKL) expression in young breast cancer
patients and during pregnancy. Breast Cancer Res. 17:242015.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
26
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar
|
27
|
Wang W, Guo W, Li L, Fu Z, Liu W, Gao J,
Shu Y, Xu Q, Sun Y and Gu Y: Andrographolide reversed 5-FU
resistance in human colorectal cancer by elevating BAX expression.
Biochem Pharmacol. 121:8–17. 2016. View Article : Google Scholar
|
28
|
Marjaneh RM, Khazaei M, Ferns GA, Avan A
and Aghaee-Bakhtiari SH: The role of microRNAs in 5-FU resistance
of colorectal cancer: Possible mechanisms. J Cell Physiol.
234:2306–2316. 2019. View Article : Google Scholar
|
29
|
Wei L, Wang X, Lv L, Zheng Y, Zhang N and
Yang M: The emerging role of noncoding RNAs in colorectal cancer
chemoresistance. Cell Oncol (Dordr). 42:757–768. 2019. View Article : Google Scholar
|
30
|
Hu T, Li Z, Gao CY and Cho CH: Mechanisms
of drug resistance in colon cancer and its therapeutic strategies.
World J Gastroenterol. 22:6876–6889. 2016. View Article : Google Scholar
|
31
|
van Staveren MC, Opdam F, Guchelaar HJ,
van Kuilenburg AB, Maring JG and Gelderblom H: Influence of
metastatic disease on the usefulness of uracil pharmacokinetics as
a screening tool for DPD activity in colorectal cancer patients.
Cancer Chemother Pharmacol. 76:47–52. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang W, Cassidy J, O'Brien V, Ryan KM and
Collie-Duguid E: Mechanistic and predictive profiling of
5-Fluorouracil resistance in human cancer cells. Cancer Res.
64:8167–8176. 2004. View Article : Google Scholar
|
33
|
Leckband S, Kelsoe J, Dunnenberger H,
George AL Jr, Tran E, Berger R, Müller DJ, Whirl-Carrillo M, Caudle
KE and Pirmohamed M; Clinical Pharmacogenetics Implementation
Consortiu: Clinical pharmacogenetics implementation consortium
guidelines for HLA-B genotype and carbamazepine dosing. Clin
Pharmacol Ther. 94:324–328. 2013. View Article : Google Scholar
|
34
|
van Niekerk G and Engelbrecht AM: Role of
PKM2 in directing the metabolic fate of glucose in cancer: A
potential therapeutic target. Cell Oncol (Dordr). 41:343–351. 2018.
View Article : Google Scholar
|
35
|
Kim SH, Kim SC and Ku JL: Metformin
increases chemo-sensitivity via gene downregulation encoding DNA
replication proteins in 5-Fu resistant colorectal cancer cells.
Oncotarget. 8:56546–56557. 2017. View Article : Google Scholar :
|
36
|
Fong W and To KKW: Drug repurposing to
overcome resistance to various therapies for colorectal cancer.
Cell Mol Life Sci. 76:3383–3406. 2019. View Article : Google Scholar
|
37
|
Nagarsheth N, Wicha MS and Zou W:
Chemokines in the cancer microenvironment and their relevance in
cancer immunotherapy. Nat Rev Immunol. 17:559–572. 2017. View Article : Google Scholar
|
38
|
Yoshitake N, Fukui H, Yamagishi H,
Sekikawa A, Fujii S, Tomita S, Ichikawa K, Imura J, Hiraishi H and
Fujimori T: Expression of SDF-1 alpha and nuclear CXCR4 predicts
lymph node metastasis in colorectal cancer. Br J Cancer.
98:1682–1689. 2008. View Article : Google Scholar
|
39
|
Akishima-Fukasawa Y, Nakanishi Y, Ino Y,
Moriya Y, Kanai Y and Hirohashi S: Prognostic significance of
CXCL12 expression in patients with colorectal carcinoma. Am J Clin
Pathol. 132:202–210; quiz 307. 2009. View Article : Google Scholar
|
40
|
Wang B, Hasan MK, Alvarado E, Yuan H, Wu H
and Chen WY: NAMPT overexpression in prostate cancer and its
contribution to tumor cell survival and stress response. Oncogene.
30:907–921. 2011. View Article : Google Scholar
|
41
|
Hung AC, Lo S, Hou MF, Lee YC, Tsai CH,
Chen YY, Liu W, Su YH, Lo YH, Wang CH, et al: Extracellular
visfatin-promoted malignant behavior in breast cancer is mediated
through c-Abl and STAT3 activation. Clin Cancer Res. 22:4478–4490.
2016. View Article : Google Scholar
|
42
|
Yang J, Zhang K, Song H, Wu M, Li J, Yong
Z, Jiang S, Kuang X and Zhang T: Visfatin is involved in promotion
of colorectal carcinoma malignancy through an inducing EMT
mechanism. Oncotarget. 7:32306–32317. 2016. View Article : Google Scholar
|
43
|
Cheng G, Liu C, Sun X, Zhang L, Liu L,
Ouyang J and Li B: Visfatin promotes osteosarcoma cell migration
and invasion via induction of epithelial-mesenchymal transition.
Oncol Rep. 34:987–994. 2015. View Article : Google Scholar
|
44
|
Ye C, Qi L, Li X, Wang J, Yu J, Zhou B,
Guo C, Chen J and Zheng S: Targeting the NAD+ salvage
pathway suppresses APC mutation-driven colorectal cancer growth and
Wnt/β-catenin signaling via increasing Axin level. Cell Commun
Signal. 18:162020. View Article : Google Scholar
|
45
|
Ding D, Zhang P, Liu Y and Wang Y, Sun W,
Yu Z, Cheng Z and Wang Y: Runx2 was correlated with neurite
outgrowth and schwann cell differentiation, migration after sciatic
nerve crush. Neurochem Res. 43:2423–2434. 2018. View Article : Google Scholar
|
46
|
Yu JS and Cui W: Proliferation, survival
and metabolism: The role of PI3K/AKT/mTOR signalling in
pluripotency and cell fate determination. Development.
143:3050–3060. 2016. View Article : Google Scholar
|
47
|
Celià-Terrassa T and Jolly MK: Cancer stem
cells and epithelial-to-mesenchymal transition in cancer
metastasis. Cold Spring Harb Perspect Med. 10:a0369052020.
View Article : Google Scholar
|
48
|
Amara S, Chaar I, Khiari M, Ounissi D,
Weslati M, Boughriba R, Hmida AB and Bouraoui S: Stromal cell
derived factor-1 and CXCR4 expression in colorectal cancer promote
liver metastasis. Cancer Biomark. 15:869–879. 2015. View Article : Google Scholar
|
49
|
Jung Y, Cackowski FC, Yumoto K, Decker AM,
Wang J, Kim JK, Lee E, Wang Y, Chung JS, Gursky AM, et al: CXCL12γ
promotes metastatic castration-resistant prostate cancer by
inducing cancer stem cell and neuroendocrine phenotypes. Cancer
Res. 78:2026–2039. 2018. View Article : Google Scholar
|
50
|
Jung MJ, Rho JK, Kim YM, Jung JE, Jin YB,
Ko YG, Lee JS, Lee SJ, Lee JC and Park MJ: Upregulation of CXCR4 is
functionally crucial for maintenance of stemness in drug-resistant
non-small cell lung cancer cells. Oncogene. 32:209–221. 2013.
View Article : Google Scholar
|