Molecular targets of primary cilia defects in cancer (Review)
- Authors:
- Fengying Yin
- Zihao Wei
- Fangman Chen
- Chuan Xin
- Qianming Chen
-
Affiliations: Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China - Published online on: July 4, 2022 https://doi.org/10.3892/ijo.2022.5388
- Article Number: 98
This article is mentioned in:
Abstract
Mitchison HM and Valente EM: Motile and non-motile cilia in human pathology: From function to phenotypes. J Pathol. 241:294–309. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, Kim JC, Ross AJ, Eichers ER, Teslovich TM, et al: Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature. 425:628–633. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sattar S and Gleeson JG: The ciliopathies in neuronal development: A clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol. 53:793–798. 2011. View Article : Google Scholar : PubMed/NCBI | |
Franco B and Thauvin-Robinet C: Update on oral-facial-digital syndromes (OFDS). Cilia. 5:122016. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-Perez VL, Blair HJ, Rodriguez-Andres ME, Blanco MJ, Wilson A, Liu YN, Miles C, Peters H and Goodship JA: Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia. Development. 134:2903–2912. 2007. View Article : Google Scholar : PubMed/NCBI | |
Singla V and Reiter JF: The primary cilium as the cell's antenna: Signaling at a sensory organelle. Science. 313:629–633. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pala R, Alomari N and Nauli SM: Primary cilium-dependent signaling mechanisms. Int J Mol Sci. 18:22722017. View Article : Google Scholar : PubMed/NCBI | |
Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH Jr, Dlugosz AA and Reiter JF: Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med. 15:1055–1061. 2009. View Article : Google Scholar : PubMed/NCBI | |
Han YG, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ and Alvarez-Buylla A: Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med. 15:1062–1065. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Dabiri S and Seeley ES: Primary cilium depletion typifies cutaneous melanoma in situ and malignant melanoma. PLoS One. 6:e274102011. View Article : Google Scholar : PubMed/NCBI | |
Seeley ES, Carriere C, Goetze T, Longnecker DS and Korc M: Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 69:422–430. 2009. View Article : Google Scholar : PubMed/NCBI | |
Menzl I, Lebeau L, Pandey R, Hassounah NB, Li FW, Nagle R, Weihs K and McDermott KM: Loss of primary cilia occurs early in breast cancer development. Cilia. 3:72014. View Article : Google Scholar : PubMed/NCBI | |
Mansini AP, Lorenzo Pisarello MJ, Thelen KM, Cruz-Reyes M, Peixoto E, Jin S, Howard BN, Trussoni CE, Gajdos GB, LaRusso NF, et al: MicroRNA (miR)-433 and miR-22 dysregulations induce histone-deacetylase-6 overexpression and ciliary loss in cholangiocarcinoma. Hepatology. 68:561–573. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hassounah NB, Nagle R, Saboda K, Roe DJ, Dalkin BL and McDermott KM: Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS One. 8:e685212013. View Article : Google Scholar : PubMed/NCBI | |
Basten SG, Willekers S, Vermaat JS, Slaats GG, Voest EE, van Diest PJ and Giles RH: Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue. Cilia. 2:22013. View Article : Google Scholar : PubMed/NCBI | |
Yin F, Chen Q, Shi Y, Xu H, Huang J, Qing M, Zhong L, Li J, Xie L and Zeng X: Activation of EGFR-Aurora A induces loss of primary cilia in oral squamous cell carcinoma. Oral Dis. 28:621–630. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yin F, Chen Q, Shi Y, Xu H, Huang J, Qing M, Zhong L, Li J, Xie L and Zeng X: Activation of EGFR-Aurora A induces loss of primary cilia in oral squamous cell carcinoma. Oral Dis. 28:621–630. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sorokin S: Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol. 15:363–377. 1962. View Article : Google Scholar : PubMed/NCBI | |
Sorokin SP: Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci. 3:207–230. 1968. View Article : Google Scholar : PubMed/NCBI | |
Reiter JF, Blacque OE and Leroux MR: The base of the cilium: Roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13:608–618. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bernabe-Rubio M and Alonso MA: Routes and machinery of primary cilium biogenesis. Cell Mol Life Sci. 74:4077–4095. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sanchez I and Dynlacht BD: Cilium assembly and disassembly. Nat Cell Biol. 18:711–717. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pugacheva EN, Jablonski SA, Hartman TR, Henske EP and Golemis EA: HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell. 129:1351–1363. 2007. View Article : Google Scholar : PubMed/NCBI | |
Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura S, Kiyono T, et al: Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J Cell Biol. 197:391–405. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kinzel D, Boldt K, Davis EE, Burtscher I, Trümbach D, Diplas B, Attié-Bitach T, Wurst W, Katsanis N, Ueffing M and Lickert H: Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev Cell. 19:66–77. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi T, Tsang WY, Li J, Lane W and Dynlacht BD: Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell. 145:914–925. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto T, Hosoba K, Ochiai H, Royba E, Izumi H, Sakuma T, Yamamoto T, Dynlacht BD and Matsuura S: The Microtubule-depolymerizing activity of a mitotic kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation. Cell Rep. 10:664–673. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Zaghloul NA, Bubenshchikova E, Oh EC, Rankin S, Katsanis N, Obara T and Tsiokas L: Nde1-mediated inhibition of ciliogenesis affects cell cycle Re-entry. Nat Cell Biol. 13:351–360. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li A, Saito M, Chuang JZ, Tseng YY, Dedesma C, Tomizawa K, Kaitsuka T and Sung CH: Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nat Cell Biol. 13:402–411. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nobutani K, Shimono Y, Yoshida M, Mizutani K, Minami A, Kono S, Mukohara T, Yamasaki T, Itoh T, Takao S, et al: Absence of primary cilia in cell cycle-arrested human breast cancer cells. Genes Cells. 19:141–152. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang N, Leung EL, Liu C, Li L, Eguether T, Jun Yao XJ, Jones EC, Norris DA, Liu A, Clark RA, et al: INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma. Oncogene. 36:4997–5005. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frett B, Brown RV, Ma M, Hu W, Han H and Li HY: Therapeutic melting pot of never in mitosis gene a related kinase 2 (Nek2): A perspective on Nek2 as an oncology target and recent advancements in Nek2 small molecule inhibition. J Med Chem. 57:5835–5844. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang PH, Zhang L, Zhang YJ, Zhang J and Xu WF: HDAC6: Physiological function and its selective inhibitors for cancer treatment. Drug Discov Ther. 7:233–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tam LW, Wilson NF and Lefebvre PA: A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol. 176:819–829. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maurya AK, Rogers T and Sengupta P: A CCRK and a MAK kinase modulate cilia branching and length via regulation of axonemal microtubule dynamics in caenorhabditis elegans. Curr Biol. 29:1286–1300.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ko HW, Norman RX, Tran J, Fuller KP, Fukuda M and Eggenschwiler JT: Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction. Dev Cell. 18:237–247. 2010. View Article : Google Scholar : PubMed/NCBI | |
Snouffer A, Brown D, Lee H, Walsh J, Lupu F, Norman R, Lechtreck K, Ko HW and Eggenschwiler J: Cell Cycle-related kinase (CCRK) regulates ciliogenesis and Hedgehog signaling in mice. PLoS Genet. 13:e10069122017. View Article : Google Scholar : PubMed/NCBI | |
Moser JJ, Fritzler MJ and Rattner JB: Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors. BMC Clin Pathol. 14:402014. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Roine N and Makela TP: CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner. EMBO Rep. 14:741–747. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hori A, Barnouin K, Snijders AP and Toda T: A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation. EMBO Rep. 17:326–337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shinmura K, Kurabe N, Goto M, Yamada H, Natsume H, Konno H and Sugimura H: PLK4 overexpression and its effect on centrosome regulation and chromosome stability in human gastric cancer. Mol Biol Rep. 41:6635–6644. 2014. View Article : Google Scholar : PubMed/NCBI | |
Coelho PA, Bury L, Shahbazi MN, Liakath-Ali K, Tate PH, Wormald S, Hindley CJ, Huch M, Archer J, Skarnes WC, et al: Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol. 5:1502092015. View Article : Google Scholar : PubMed/NCBI | |
Goldstein AL, Hannappel E, Sosne G and Kleinman HK: Thymosin β4: A multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther. 12:37–51. 2012. View Article : Google Scholar : PubMed/NCBI | |
Safer D, Elzinga M and Nachmias VT: Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 266:4029–4032. 1991. View Article : Google Scholar : PubMed/NCBI | |
Cha HJ, Jeong MJ and Kleinman HK: Role of thymosin beta4 in tumor metastasis and angiogenesis. J Natl Cancer Inst. 95:1674–1680. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang ZY, Zhang W, Yang JJ, Song DK, Wei JX and Gao S: Association of thymosin beta4 expression with clinicopathological parameters and clinical outcomes of bladder cancer patients. Neoplasma. 63:991–998. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chi LH, Chang WM, Chang YC, Chan YC, Tai CC, Leung KW, Chen CL, Wu AT, Lai TC, Li YJ and Hsiao M: Global Proteomics-based identification and validation of thymosin beta-4 X-Linked as a prognostic marker for head and neck squamous cell carcinoma. Sci Rep. 7:90312017. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Kim HS and Moon EY: Thymosin beta-4 is a novel regulator for primary cilium formation by nephronophthisis 3 in HeLa human cervical cancer cells. Sci Rep. 9:68492019. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Thuy PX, Han HK and Moon EY: Di-(2-ethylhexyl) phthalate-induced tumor growth is regulated by primary cilium formation via the axis of H2O2 production-thymosin beta-4 gene expression. Int J Med Sci. 18:1247–1258. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alieva IB, Gorgidze LA, Komarova YA, Chernobelskaya OA and Vorobjev IA: Experimental model for studying the primary cilia in tissue culture cells. Membr Cell Biol. 12:895–905. 1999.PubMed/NCBI | |
Kowal TJ and Falk MM: Primary cilia found on HeLa and other cancer cells. Cell Biol Int. 39:1341–1347. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vorobyeva AG and Saunders AJ: Amyloid-beta interrupts canonical Sonic hedgehog signaling by distorting primary cilia structure. Cilia. 7:52018. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR, Seol AD, Robinson JF, Bennett CL, Josifova DJ, et al: A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet. 43:776–784. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, et al: Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell. 145:513–528. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meng D, Chen Y, Zhao Y, Wang J, Yun D, Yang S, Chen J, Chen H and Lu D: Expression and prognostic significance of TCTN1 in human glioblastoma. J Transl Med. 12:2882014. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Chen X, Wan M, Jiang X, Li C, Cui Y and Kang P: Tectonic 1 is a key regulator of cell proliferation in pancreatic cancer. Cancer Biother Radiopharm. 31:7–13. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cano-Rodriguez D, Campagnoli S, Grandi A, Parri M, Camilli E, Song C, Jin B, Lacombe A, Pierleoni A, Bombaci M, et al: TCTN2: A novel tumor marker with oncogenic properties. Oncotarget. 8:95256–95269. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yasar B, Linton K, Slater C and Byers R: Primary cilia are increased in number and demonstrate structural abnormalities in human cancer. J Clin Pathol. 70:571–574. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rocha C, Papon L, Cacheux W, Marques Sousa P, Lascano V, Tort O, Giordano T, Vacher S, Lemmers B, Mariani P, et al: Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J. 33:2247–2260. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Tseng CP, Pong RC, Chen H, McConnell JD, Navone N and Hsieh JT: The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2. J Biol Chem. 277:12622–12631. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shen YJ, Kong ZL, Wan FN, Wang HK, Bian XJ, Gan HL, Wang CF and Ye DW: Downregulation of DAB2IP results in cell proliferation and invasion and contributes to unfavorable outcomes in bladder cancer. Cancer Sci. 105:704–712. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang ZR, Wei JH, Zhou JC, Haddad A, Zhao LY, Kapur P, Wu KJ, Wang B, Yu YH, Liao B, et al: Validation of DAB2IP methylation and its relative significance in predicting outcome in renal cell carcinoma. Oncotarget. 7:31508–31519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin CJ, Dang A, Hernandez E and Hsieh JT: DAB2IP modulates primary cilia formation associated with renal tumorigenesis. Neoplasia. 23:169–180. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schneider L, Essmann F, Kletke A, Rio P, Hanenberg H, Wetzel W, Schulze-Osthoff K, Nürnberg B and Piekorz RP: The transforming acidic coiled coil 3 protein is essential for spindle-dependent chromosome alignment and mitotic survival. J Biol Chem. 282:29273–29283. 2007. View Article : Google Scholar : PubMed/NCBI | |
Campo L and Breuer EK: Inhibition of TACC3 by a small molecule inhibitor in breast cancer. Biochem Biophys Res Commun. 498:1085–1092. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Kuang B, Que Y, Lin Z, Yuan L, Xiao W, Peng R and Zhang X and Zhang X: The clinical significance of transforming acidic coiled-coil protein 3 expression in non-small cell lung cancer. Oncol Rep. 35:436–446. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qie Y, Wang L, Du E, Chen S, Lu C, Ding N, Yang K and Xu Y: TACC3 promotes prostate cancer cell proliferation and restrains primary cilium formation. Exp Cell Res. 390:1119522020. View Article : Google Scholar : PubMed/NCBI | |
Adams M, Simms RJ, Abdelhamed Z, Dawe HR, Szymanska K, Logan CV, Wheway G, Pitt E, Gull K, Knowles MA, et al: A meckelin-filamin A interaction mediates ciliogenesis. Hum Mol Genet. 21:1272–1286. 2012. View Article : Google Scholar : PubMed/NCBI | |
Goepfert TM, Adigun YE, Zhong L, Gay J, Medina D and Brinkley WR: Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res. 62:4115–4122. 2002.PubMed/NCBI | |
Gritsko TM, Coppola D, Paciga JE, Yang L, Sun M, Shelley SA, Fiorica JV, Nicosia SV and Cheng JQ: Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res. 9:1420–1426. 2003.PubMed/NCBI | |
Kobayashi T, Nakazono K, Tokuda M, Mashima Y, Dynlacht BD and Itoh H: HDAC2 promotes loss of primary cilia in pancreatic ductal adenocarcinoma. EMBO Rep. 18:334–343. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dere R, Perkins AL, Bawa-Khalfe T, Jonasch D and Walker CL: β-catenin links von Hippel-Lindau to aurora kinase A and loss of primary cilia in renal cell carcinoma. J Am Soc Nephrol. 26:553–564. 2015. View Article : Google Scholar : PubMed/NCBI | |
Egeberg DL, Lethan M, Manguso R, Schneider L, Awan A, Jørgensen TS, Byskov AG, Pedersen LB and Christensen ST: Primary cilia and aberrant cell signaling in epithelial ovarian cancer. Cilia. 1:152012. View Article : Google Scholar : PubMed/NCBI | |
O'Toole SM, Watson DS, Novoselova TV, Romano LEL, King PJ, Bradshaw TY, Thompson CL, Knight MM, Sharp TV, Barnes MR, et al: Oncometabolite induced primary cilia loss in pheochromocytoma. Endocr Relat Cancer. 26:165–180. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Li J, Yang X, Ma J, Gong F and Liu Y: Prdx1 promotes the loss of primary cilia in esophageal squamous cell carcinoma. BMC Cancer. 20:3722020. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Li H, Wang B, Xu Y, Yang J, Zhang X, Harten SK, Shukla D, Maxwell PH, Pei D and Esteban MA: VHL inactivation induces HEF1 and Aurora kinase A. J Am Soc Nephrol. 21:2041–2046. 2010. View Article : Google Scholar : PubMed/NCBI | |
Plotnikova OV, Seo S, Cottle DL, Conduit S, Hakim S, Dyson JM, Mitchell CA and Smyth IM: INPP5E interacts with AURKA, linking phosphoinositide signaling to primary cilium stability. J Cell Sci. 128:364–372. 2015.PubMed/NCBI | |
Conduit SE, Ramaswamy V, Remke M, Watkins DN, Wainwright BJ, Taylor MD, Mitchell CA and Dyson JM: A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma. Oncogene. 36:5969–5984. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB and LaRusso NF: HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res. 73:2259–2270. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peixoto E, Jin S, Thelen K, Biswas A, Richard S, Morleo M, Mansini A, Holtorf S, Carbone F, Pastore N, et al: HDAC6-dependent ciliophagy is involved in ciliary loss and cholangiocarcinoma growth in human cells and murine models. Am J Physiol Gastrointest Liver Physiol. 318:G1022–G1033. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Lee K, Choi JH, Ringstad N and Dynlacht BD: Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat Commun. 6:80872015. View Article : Google Scholar : PubMed/NCBI | |
Cappello P, Blaser H, Gorrini C, Lin DC, Elia AJ, Wakeham A, Haider S, Boutros PC, Mason JM, Miller NA, et al: Role of Nek2 on centrosome duplication and aneuploidy in breast cancer cells. Oncogene. 33:2375–2384. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, Xu H, Shetty S, Chen T, Zeng Z, et al: NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell. 23:48–62. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM and Fry AM: The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res. 64:7370–7376. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hassounah NB, Nunez M, Fordyce C, Roe D, Nagle R, Bunch T and McDermott KM: Inhibition of ciliogenesis promotes hedgehog signaling, tumorigenesis, and metastasis in breast cancer. Mol Cancer Res. 15:1421–1430. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rogowski K, Juge F, van Dijk J, Wloga D, Strub JM, Levilliers N, Thomas D, Bré MH, Van Dorsselaer A, Gaertig J and Janke C: Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell. 137:1076–1087. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bosch Grau M, Masson C, Gadadhar S, Rocha C, Tort O, Marques Sousa P, Vacher S, Bieche I and Janke C: Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration. J Cell Sci. 130:938–949. 2017.PubMed/NCBI | |
Pathak N, Austin CA and Drummond IA: Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility. J Biol Chem. 286:11685–11695. 2011. View Article : Google Scholar : PubMed/NCBI | |
Curatolo P, Bombardieri R and Jozwiak S: Tuberous sclerosis. Lancet. 372:657–668. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jozwiak J: Hamartin and tuberin: Working together for tumour suppression. Int J Cancer. 118:1–5. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T and Henske EP: The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet. 18:151–163. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wilson C, Bonnet C, Guy C, Idziaszczyk S, Colley J, Humphreys V, Maynard J, Sampson JR and Cheadle JP: Tsc1 haploinsufficiency without mammalian target of rapamycin activation is sufficient for renal cyst formation in Tsc1+/- mice. Cancer Res. 66:7934–7938. 2006. View Article : Google Scholar : PubMed/NCBI | |
DiBella LM, Park A and Sun Z: Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum Mol Genet. 18:595–606. 2009. View Article : Google Scholar : PubMed/NCBI | |
Armour EA, Carson RP and Ess KC: Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules. Am J Physiol Renal Physiol. 303:F584–F592. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rosengren T, Larsen LJ, Pedersen LB, Christensen ST and Moller LB: TSC1 and TSC2 regulate cilia length and canonical Hedgehog signaling via different mechanisms. Cell Mol Life Sci. 75:2663–2680. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sherpa RT, Atkinson KF, Ferreira VP and Nauli SM: Rapamycin increases length and mechanosensory function of primary cilia in renal epithelial and vascular endothelial cells. Int Educ Res J. 2:91–97. 2016.PubMed/NCBI | |
Takahashi K, Nagai T, Chiba S, Nakayama K and Mizuno K: Glucose deprivation induces primary cilium formation through mTORC1 inactivation. J Cell Sci. 131:jcs2087692018.PubMed/NCBI | |
Huber TB, Walz G and Kuehn EW: mTOR and rapamycin in the kidney: Signaling and therapeutic implications beyond immunosuppression. Kidney Int. 79:502–511. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, et al: The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA. 103:5466–5471. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang T and George DJ: Immunotherapy and targeted-therapy combinations mark a new era of kidney cancer treatment. Nat Med. 27:586–588. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Sun T, Shao Z, Zhang Q, Ouyang Q, Tong Z, Wang S, Luo Y, Teng Y, Wang X, et al: Effectiveness of adding everolimus to the First-line treatment of advanced breast cancer in premenopausal women who experienced disease progression while receiving selective estrogen receptor modulators: A phase 2 randomized clinical trial. JAMA Oncol. 7:e2134282021. View Article : Google Scholar : PubMed/NCBI | |
Ferrante MI, Giorgio G, Feather SA, Bulfone A, Wright V, Ghiani M, Selicorni A, Gammaro L, Scolari F, Woolf AS, et al: Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet. 68:569–576. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Chen X, Wang F, Zhang J, Li P, Li Z, Xu J, Gao F, Jin C, Tian H, et al: OFD1, as a ciliary protein, exhibits neuroprotective function in photoreceptor degeneration models. PLoS One. 11:e01558602016. View Article : Google Scholar : PubMed/NCBI | |
Singla V, Romaguera-Ros M, Garcia-Verdugo JM and Reiter JF: Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev Cell. 18:410–424. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lopes CA, Prosser SL, Romio L, Hirst RA, O'Callaghan C, Woolf AS and Fry AM: Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. J Cell Sci. 124:600–612. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T, Franco B and Zhong Q: Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature. 502:254–257. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Yi S, Kang YE, Chang JY, Kim JT, Sul HJ, Kim JO, Kim JM, Kim J, Porcelli AM, et al: Defective ciliogenesis in thyroid hurthle cell tumors is associated with increased autophagy. Oncotarget. 7:79117–79130. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pampliega O, Orhon I, Patel B, Sridhar S, Díaz-Carretero A, Beau I, Codogno P, Satir BH, Satir P and Cuervo AM: Functional interaction between autophagy and ciliogenesis. Nature. 502:194–200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maharjan Y, Lee JN, Kwak S, Lim H, Dutta RK, Liu ZQ, So HS and Park R: Autophagy alteration prevents primary cilium disassembly in RPE1 cells. Biochem Biophys Res Commun. 500:242–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ko JY, Lee EJ and Park JH: Interplay between primary cilia and autophagy and its controversial roles in cancer. Biomol Ther (Seoul). 27:337–341. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kaelin WG Jr and Ratcliffe PJ: Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI | |
Maher ER and Kaelin WG Jr: von Hippel-Lindau disease. Medicine (Baltimore). 76:381–391. 1997. View Article : Google Scholar : PubMed/NCBI | |
Arjumand W and Sultana S: Role of VHL gene mutation in human renal cell carcinoma. Tumour Biol. 33:9–16. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schermer B, Ghenoiu C, Bartram M, Müller RU, Kotsis F, Höhne M, Kühn W, Rapka M, Nitschke R, Zentgraf H, et al: The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol. 175:547–554. 2006. View Article : Google Scholar : PubMed/NCBI | |
Noonan HR, Metelo AM, Kamei CN, Peterson RT, Drummond IA and Iliopoulos O: Loss of vhl in the zebrafish pronephros recapitulates early stages of human clear cell renal cell carcinoma. Dis Model Mech. 9:873–884. 2016. View Article : Google Scholar : PubMed/NCBI | |
Frew IJ and Moch H: A clearer view of the molecular complexity of clear cell renal cell carcinoma. Annu Rev Pathol. 10:263–289. 2015. View Article : Google Scholar : PubMed/NCBI | |
Albers J, Rajski M, Schonenberger D, Harlander S, Schraml P, von Teichman A, Georgiev S, Wild PJ, Moch H, Krek W and Frew IJ: Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice. EMBO Mol Med. 5:949–964. 2013. View Article : Google Scholar : PubMed/NCBI | |
Frew IJ, Thoma CR, Georgiev S, Minola A, Hitz M, Montani M, Moch H and Krek W: pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation. EMBO J. 27:1747–1757. 2008. View Article : Google Scholar : PubMed/NCBI | |
Harlander S, Schonenberger D, Toussaint NC, Prummer M, Catalano A, Brandt L, Moch H, Wild PJ and Frew IJ: Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice. Nat Med. 23:869–877. 2017. View Article : Google Scholar : PubMed/NCBI | |
Esteban MA, Harten SK, Tran MG and Maxwell PH: Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol. 17:1801–1806. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ding XF, Zhou J, Hu QY, Liu SC and Chen G: The tumor suppressor pVHL down-regulates never-in-mitosis A-related kinase 8 via hypoxia-inducible factors to maintain cilia in human renal cancer cells. J Biol Chem. 290:1389–1394. 2015. View Article : Google Scholar : PubMed/NCBI | |
Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, Ludwig L, Wilda M, Hameister H, Knöchel W, et al: SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J. 21:5417–5426. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ariyoshi M and Schwabe JW: A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev. 17:1909–1920. 2003. View Article : Google Scholar : PubMed/NCBI | |
Legare S, Cavallone L, Mamo A, Chabot C, Sirois I, Magliocco A, Klimowicz A, Tonin PN, Buchanan M, Keilty D, et al: The estrogen receptor cofactor SPEN functions as a tumor suppressor and candidate biomarker of drug responsiveness in hormone-dependent breast cancers. Cancer Res. 75:4351–4363. 2015. View Article : Google Scholar : PubMed/NCBI | |
Legare S, Chabot C and Basik M: SPEN, a new player in primary cilia formation and cell migration in breast cancer. Breast Cancer Res. 19:1042017. View Article : Google Scholar : PubMed/NCBI | |
Margueron R and Reinberg D: The Polycomb complex PRC2 and its mark in life. Nature. 469:343–349. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Brea LT and Yu J: Immune modulatory functions of EZH2 in the tumor microenvironment: Implications in cancer immunotherapy. Am J Clin Exp Urol. 7:85–91. 2019.PubMed/NCBI | |
Zingg D, Debbache J, Peña-Hernández R, Antunes AT, Schaefer SM, Cheng PF, Zimmerli D, Haeusel J, Calçada RR, Tuncer E, et al: EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell. 34:69–84.e14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Denhez F, Wilcox-Adelman SA, Baciu PC, Saoncella S, Lee S, French B, Neveu W and Goetinck PF: Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5. J Biol Chem. 277:12270–12274. 2002. View Article : Google Scholar : PubMed/NCBI | |
Avolio R, Jarvelin AI, Mohammed S, Agliarulo I, Condelli V, Zoppoli P, Calice G, Sarnataro D, Bechara E, Tartaglia GG, et al: Protein syndesmos is a novel RNA-binding protein that regulates primary cilia formation. Nucleic Acids Res. 46:12067–12086. 2018.PubMed/NCBI | |
Haigis KM: KRAS alleles: The devil is in the detail. Trends Cancer. 3:686–697. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kempf E, Rousseau B, Besse B and Paz-Ares L: KRAS oncogene in lung cancer: Focus on molecularly driven clinical trials. Eur Respir Rev. 25:71–76. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pupo E, Avanzato D, Middonti E, Bussolino F and Lanzetti L: KRAS-driven metabolic rewiring reveals novel actionable targets in cancer. Front Oncol. 9:8482019. View Article : Google Scholar : PubMed/NCBI | |
Eser S, Schnieke A, Schneider G and Saur D: Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 111:817–822. 2014. View Article : Google Scholar : PubMed/NCBI | |
Raleigh DR, Choksi PK, Krup AL, Mayer W, Santos N and Reiter JF: Hedgehog signaling drives medulloblastoma growth via CDK6. J Clin Invest. 128:120–124. 2018. View Article : Google Scholar : PubMed/NCBI | |
Farooqi AA, de la Roche M, Djamgoz MBA and Siddik ZH: Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Semin Cancer Biol. 58:65–79. 2019. View Article : Google Scholar : PubMed/NCBI | |
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, et al: What do we have to know about PD-L1 expression in prostate cancer? a systematic literature review. Part 3: PD-L1, intracellular signaling pathways and tumor microenvironment. Int J Mol Sci. 22:123302021. View Article : Google Scholar : PubMed/NCBI | |
Eguether T, Cordelieres FP and Pazour GJ: Intraflagellar transport is deeply integrated in hedgehog signaling. Mol Biol Cell. 29:1178–1189. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deng YZ, Cai Z, Shi S, Jiang H, Shang YR, Ma N, Wang JJ, Guan DX, Chen TW, Rong YF, et al: Cilia loss sensitizes cells to transformation by activating the mevalonate pathway. J Exp Med. 215:177–195. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la Roche M, Michaelis M, et al: Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. 23:3042–3055. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khan NA, Willemarck N, Talebi A, Marchand A, Binda MM, Dehairs J, Rueda-Rincon N, Daniels VW, Bagadi M, Thimiri Govinda Raj DB, et al: Identification of drugs that restore primary cilium expression in cancer cells. Oncotarget. 7:9975–9992. 2016. View Article : Google Scholar : PubMed/NCBI |