Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review)
- Authors:
- Sui Li
- Xiaofang Xie
- Fu Peng
- Junrong Du
- Cheng Peng
-
Affiliations: Department of Pharmacology, Key Laboratory of Drug‑Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‑Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China - Published online on: July 5, 2022 https://doi.org/10.3892/ijo.2022.5391
- Article Number: 101
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J and Suziedelis K: Non-coding RNAs in glioma. Cancers (Basel). 11:172018. View Article : Google Scholar | |
De Sanctis V, Mazzarella G, Osti MF, Valeriani M, Alfó M, Salvati M, Banelli E, Tombolini V and Enrici RM: Radiotherapy and sequential temozolomide compared with radiotherapy with concomitant and sequential temozolomide in the treatment of newly diagnosed glioblastoma multiforme. Anticancer Drugs. 17:969–975. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K, et al: Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA. 318:2306–2316. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI | |
Strobel H, Baisch T, Fitzel R, Schilberg K, Siegelin MD, Karpel-Massler G, Debatin KM and Westhoff MA: Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines. 7:692019. View Article : Google Scholar : | |
Zhang J, Stevens MF and Bradshaw TD: Temozolomide: Mechanisms of action, repair and resistance. Curr Mol Pharmacol. 5:102–114. 2012. View Article : Google Scholar | |
Stupp R, Brada M, van den Bent MJ and Tonn JC: High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 25(Suppl 3): iii93–iii101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee SY: Temozolomide resistance in glioblastoma multiforme. Genes Dis. 3:198–210. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kanzawa T, Bedwell J, Kondo Y, Kondo S and Germano IM: Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. J Neurosurg. 99:1047–1052. 2003. View Article : Google Scholar | |
Jiang G, Li LT, Xin Y, Zhang L, Liu YQ and Zheng JN: Strategies to improve the killing of tumors using temozolomide: Targeting the DNA repair protein MGMT. Curr Med Chem. 19:3886–3892. 2012. View Article : Google Scholar : PubMed/NCBI | |
Perazzoli G, Prados J, Ortiz R, Caba O, Cabeza L, Berdasco M, Gónzalez B and Melguizo C: Temozolomide resistance in glioblastoma cell lines: Implication of MGMT, MMR, P-glycoprotein and CD133 expression. PLoS One. 10:e01401312015. View Article : Google Scholar : PubMed/NCBI | |
Tang JB, Svilar D, Trivedi RN, Wang XH, Goellner EM, Moore B, Hamilton RL, Banze LA, Brown AR and Sobol RW: N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Neuro Oncol. 13:471–486. 2011. View Article : Google Scholar : PubMed/NCBI | |
ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature. 489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI | |
Comings DE: The structure and function of chromatin. Adv Hum Genet. 3:237–431. 1972. View Article : Google Scholar : PubMed/NCBI | |
Hombach S and Kretz M: Non-coding RNAs: Classification, biology and functioning. Non-coding RNAs in Colorectal Cancer. Slaby O and Calin GA: Springer International Publishing; Cham: pp. 3–17. 2016, View Article : Google Scholar | |
Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ and Calin GA: Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 34:5003–5011. 2015. View Article : Google Scholar : PubMed/NCBI | |
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, et al: The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 22:1775–1789. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schmitz SU, Grote P and Herrmann BG: Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 73:2491–2509. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu B and Wang S: Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics. 8:3654–3675. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wilusz JE, Sunwoo H and Spector DL: Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, Abdelmohsen K and Gorospe M: Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 34:9–14. 2014. View Article : Google Scholar : PubMed/NCBI | |
Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, Zhang A, Jia Z, Wang G, Yu S, et al: LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol. 40:2004–2012. 2012.PubMed/NCBI | |
Zhang J, Zhang Z, Chen Z and Deng L: Integrating multiple heterogeneous networks for novel LncRNA-disease association inference. IEEE/ACM Trans Comput Biol Bioinform. 16:396–406. 2019. View Article : Google Scholar | |
Bolha L, Ravnik-Glavač M and Glavač D: Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017:72439682017. View Article : Google Scholar : PubMed/NCBI | |
Mahinfar P, Baradaran B, Davoudian S, Vahidian F, Cho WC and Mansoori B: Long Non-coding RNAs in multidrug resistance of glioblastoma. Genes (Basel). 12:4552021. View Article : Google Scholar | |
Jiang Y, Guo H, Tong T, Xie F, Qin X, Wang X, Chen W and Zhang J: lncRNA lnc-POP11 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5. Mol Ther. 30:448–467. 2022. View Article : Google Scholar | |
Chen KY, Zhu SG, He JW and Duan XP: LncRNA CRNDE is involved in radiation resistance in hepatocellular carcinoma via modulating the SP1/PDK1 axis. Neoplasma. 211230N18532022.Epub ahead of print. PubMed/NCBI | |
Wu J, Xu S, Li W, Lu Y, Zhou Y, Xie M, Luo Y, Cao Y, He Y, Zeng T and Ling H: lncRNAs as hallmarks for individualized treatment of gastric cancer. Anticancer Agents Med Chem. 22:1440–1457. 2022. View Article : Google Scholar | |
Ye X, Wang LP, Han C, Hu H, Ni CM, Qiao GL, Ouyang L and Ni JS: Increased m6A modification of lncRNA DBH-AS1 suppresses pancreatic cancer growth and gemcitabine resistance via the miR-3163/USP44 axis. Ann Transl Med. 10:3042022. View Article : Google Scholar | |
Jiang X, Li H, Fang Y and Xu C: LncRNA PVT1 contributes to invasion and doxorubicin resistance of bladder cancer cells through promoting MDM2 expression and AURKB-mediated p53 ubiquitination. Environ Toxicol. 37:1495–1508. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng M, Wang Q, Chen L, Zhao D, Tang J, Xu J and He Z: LncRNA UCA1/miR-182-5p/MGMT axis modulates glioma cell sensitivity to temozolomide through MGMT-related DNA damage pathways. Hum Pathol. 123:59–73. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO, Lui WM, Wong ST and Leung GK: Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis. 48:1–8. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Zhuang S, Chen X, Du J, Zhong L, Ding J, Wang L, Yi J, Hu G, Tang G, et al: lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol Ther. 30:688–702. 2022. View Article : Google Scholar | |
Li DQ, Ding YR, Che JH, Su Z, Yang WZ, Xu L, Li YJ, Wang HH and Zhou WY: Tumor suppressive lncRNA MEG3 binds to EZH2 and enhances CXCL3 methylation in gallbladder cancer. Neoplasma. 69:538–549. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yuan D, Guo T, Zhu D, Ge H, Zhao Y, Huang A, Wang X, Cao X, He C, Qian H and Yu H: Exosomal lncRNA ATB derived from ovarian cancer cells promotes angiogenesis via regulating miR-204-3p/TGFβR2 axis. Cancer Manag Res. 14:327–337. 2022. View Article : Google Scholar : | |
Yan Y, Xu Z, Li Z, Sun L and Gong Z: An insight into the increasing role of LncRNAs in the pathogenesis of gliomas. Front Mol Neurosci. 10:532017. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Liu C and Wu M: New insights into long noncoding RNAs and their roles in glioma. Mol Cancer. 17:612018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Bian EB, He XJ, Ma CC, Zong G, Wang HL and Zhao B: Epigenetic repression of long non-coding RNA MEG3 mediated by DNMT1 represses the p53 pathway in gliomas. Int J Oncol. 48:723–733. 2016. View Article : Google Scholar | |
Zeng H, Xu N, Liu Y, Liu B, Yang Z, Fu Z, Lian C and Guo H: Genomic profiling of long non-coding RNA and mRNA expression associated with acquired temozolomide resistance in glioblastoma cells. Int J Oncol. 51:445–455. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li XD, Fu Z, Zhou Y, Huang X and Jiang X: Long non-coding RNA LINC00473/miR-195-5p promotes glioma progression via YAP1-TEAD1-Hippo signaling. Int J Oncol. 56:508–521. 2020.PubMed/NCBI | |
Lei W, Wang ZL, Feng HJ, Lin XD, Li CZ and Fan D: Long non-coding RNA SNHG12promotes the proliferation and migration of glioma cells by binding to HuR. Int J Oncol. 53:1374–1384. 2018.PubMed/NCBI | |
Fang K, Liu P, Dong S, Guo Y, Cui X, Zhu X, Li X, Jiang L, Liu T and Wu Y: Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. Int J Oncol. 49:509–518. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu ZZ, Tian YF, Wu H, Ouyang SY and Kuang WL: LncRNA H19 promotes glioma angiogenesis through miR-138/HIF-1α/VEGF axis. Neoplasma. 67:111–118. 2020. View Article : Google Scholar | |
Jia P, Cai H, Liu X, Chen J, Ma J, Wang P, Liu Y, Zheng J and Xue Y: Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett. 381:359–369. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang Y, Li J, Zhang Y, Yin H and Han B: CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett. 367:122–128. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C and Liu Y: CRNDE promotes malignant progression of glioma by attenuating miR-384/PIWIL4/STAT3 axis. Mol Ther. 24:1199–1215. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shree B, Tripathi S and Sharma V: Transforming growth factor-beta-regulated LncRNA-MUF promotes invasion by modulating the miR-34a snail1 axis in glioblastoma multiforme. Front Oncol. 11:7887552022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang M, An G and Ma Q: LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med (Maywood). 241:644–649. 2016. View Article : Google Scholar | |
Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, Zhang G, Tofilon PJ and Camphausen KA: Ionizing radiation and glioblastoma exosomes: Implications in tumor biology and cell migration. Transl Oncol. 6:638–648. 2013. View Article : Google Scholar | |
Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM and Breakefield XO: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bian EB, Chen EF, Xu YD, Yang ZH, Tang F, Ma CC, Wang HL and Zhao B: Exosomal lncRNA-ATB activates astrocytes that promote glioma cell invasion. Int J Oncol. 54:713–721. 2019. | |
Lang HL, Hu GW, Chen Y, Liu Y, Tu W, Lu YM, Wu L and Xu GH: Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur Rev Med Pharmacol Sci. 21:959–972. 2017.PubMed/NCBI | |
Li MY, Yang P, Liu YW, Zhang CB, Wang KY, Wang YY, Yao K, Zhang W, Qiu XG, Li WB, et al: Low c-Met expression levels are prognostic for and predict the benefits of temozolomide chemotherapy in malignant gliomas. Sci Rep. 6:211412016. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Cai J, Chen Q, Han B, Meng X, Li Y, Li Z, Wang R, Lin L, Duan C, et al: Lnc-TALC promotes O6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun. 10:20452019. View Article : Google Scholar : | |
Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, Franciszkiewicz K, Chouaib S and Kaminska B: Microglia-derived TGF-beta as an important regulator of glioblastoma invasion-an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene. 27:918–930. 2008. View Article : Google Scholar | |
Han J, Alvarez-Breckenridge CA, Wang QE and Yu J: TGF-β signaling and its targeting for glioma treatment. Am J Cancer Res. 5:945–955. 2015. | |
Miyazawa K and Miyazono K: Regulation of TGF-β family signaling by inhibitory smads. Cold Spring Harb Perspect Biol. 9:a0220952017. View Article : Google Scholar | |
Brunen D, Willems SM, Kellner U, Midgley R, Simon I and Bernards R: TGF-β: An emerging player in drug resistance. Cell Cycle. 12:2960–2968. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oshimori N, Oristian D and Fuchs E: TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell. 160:963–976. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nie E, Jin X, Miao F, Yu T, Zhi T, Shi Z, Wang Y, Zhang J, Xie M and You Y: TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro Oncol. 23:435–446. 2021. View Article : Google Scholar | |
Fu T, Yang Y, Mu Z, Sun R, Li X and Dong J: Silencing lncRNA LINC01410 suppresses cell viability yet promotes apoptosis and sensitivity to temozolomide in glioblastoma cells by inactivating PTEN/AKT pathway via targeting miR-370-3p. Immunopharmacol Immunotoxicol. 43:680–692. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Chen Z, Chen Y, Wang X and Tang N: MIR155HG is a prognostic biomarker and associated with immune infiltration and immune checkpoint molecules expression in multiple cancers. Cancer Med. 8:7161–7173. 2019. View Article : Google Scholar : PubMed/NCBI | |
He X, Sheng J, Yu W, Wang K, Zhu S and Liu Q: LncRNA MIR155HG promotes temozolomide resistance by activating the Wnt/β-catenin pathway via binding to PTBP1 in glioma. Cell Mol Neurobiol. 41:1271–1284. 2021. View Article : Google Scholar | |
Li C, Feng S and Chen L: MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway. Mol Cell Biochem. 476:699–713. 2021. View Article : Google Scholar : | |
Boustani MR, Mehrabi F, Yahaghi E, Khoshnood RJ, Shahmohammadi M, Darian EK and Goudarzi PK: Somatic CPEB4 and CPEB1 genes mutations spectrum on the prognostic predictive accuracy in patients with high-grade glioma and their clinical significance. J Neurol Sci. 363:80–83. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gu N, Wang X, Di Z, Xiong J, Ma Y, Yan Y, Qian Y, Zhang Q and Yu J: Silencing lncRNA FOXD2-AS1 inhibits proliferation, migration, invasion and drug resistance of drug-resistant glioma cells and promotes their apoptosis via microRNA-98-5p/CPEB4 axis. Aging (Albany NY). 11:10266–10283. 2019. View Article : Google Scholar | |
Su YK, Lin JW, Shih JW, Chuang HY, Fong IH, Yeh CT and Lin CM: Targeting BC200/miR218-5p signaling axis for overcoming temozolomide resistance and suppressing glioma stemness. Cells. 9:18592020. View Article : Google Scholar : | |
Ding J, Zhang L, Chen S, Cao H, Xu C and Wang X: lncRNA CCAT2 enhanced resistance of glioma cells against chemodrugs by disturbing the normal function of miR-424. Onco Targets Ther. 13:1431–1445. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Meng X, Wu P, Zha C, Han B, Li L, Sun N, Qi T, Qin J, Zhang Y, et al: Glioblastoma cell-derived lncRNA-containing exosomes induce microglia to produce complement C5, promoting chemotherapy resistance. Cancer Immunol Res. 9:1383–1399. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li B, Zhao H, Song J, Wang F and Chen M: LINC00174 down-regulation decreases chemoresistance to temozolomide in human glioma cells by regulating miR-138-5p/SOX9 axis. Hum Cell. 33:159–174. 2020. View Article : Google Scholar | |
Jia L, Tian Y, Chen Y and Zhang G: The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-catenin pathway. Onco Targets Ther. 11:313–321. 2018. View Article : Google Scholar : | |
Jiang P, Wang P, Sun X, Yuan Z, Zhan R, Ma X and Li W: Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy. Onco Targets Ther. 9:3501–3509. 2016.PubMed/NCBI | |
Zhou L, Huang X, Zhang Y, Wang L, Li H and Huang H: PSMG3-AS1 enhances glioma resistance to temozolomide via stabilizing c-Myc in the nucleus. Brain Behav. 12:e25312022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Guo S, Liang C and Lian M: Long intergenic noncoding RNA 00021 promotes glioblastoma temozolomide resistance by epigenetically silencing p21 through Notch pathway. IUBMB Life. 72:1747–1756. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cui B, Li B, Liu Q and Cui Y: lncRNA CCAT1 promotes glioma tumorigenesis by sponging miR-181b. J Cell Biochem. 118:4548–4557. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yi K, Liu X, Tan Y, Jin W, Li Y, Zhou J, Wang F and Kang C: HOTAIR up-regulation activates NF-κB to induce immunoescape in gliomas. Front Immunol. 12:7854632021. View Article : Google Scholar | |
Wang W, Han S, Gao W, Feng Y, Li K and Wu D: Long noncoding RNA KCNQ1OT1 confers gliomas resistance to temozolomide and enhances cell growth by retrieving PIM1 from miR-761. Cell Mol Neurobiol. 42:695–708. 2022. View Article : Google Scholar | |
Wang Y, Shan A, Zhou Z, Li W, Xie L, Du B and Lei B: LncRNA TCONS_00004099-derived microRNA regulates oncogenesis through PTPRF in gliomas. Ann Transl Med. 9:10232021. View Article : Google Scholar : PubMed/NCBI | |
Dong ZQ, Guo ZY and Xie J: The lncRNA EGFR-AS1 is linked to migration, invasion and apoptosis in glioma cells by targeting miR-133b/RACK1. Biomed Pharmacother. 118:1092922019. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Cheng Y, Yuan Z, Wang F, Yang L and Zhao H: NCK1-AS1 increases drug resistance of glioma cells to temozolomide by modulating miR-137/TRIM24. Cancer Biother Radiopharm. 35:101–108. 2020. View Article : Google Scholar | |
Lu Y, Tian M, Liu J and Wang K: LINC00511 facilitates temozolomide resistance of glioblastoma cells via sponging miR-126-5p and activating Wnt/β-catenin signaling. J Biochem Mol Toxicol. 35:e228482021. View Article : Google Scholar | |
Tomar VS, Patil V and Somasundaram K: Temozolomide induces activation of Wnt/β-catenin signaling in glioma cells via PI3K/Akt pathway: Implications in glioma therapy. Cell Biol Toxicol. 36:273–278. 2020. View Article : Google Scholar | |
Liu H, Liu Z, Jiang B, Peng R, Ma Z and Lu J: SOX9 overexpression promotes glioma metastasis via Wnt/β-catenin signaling. Cell Biochem Biophys. 73:205–212. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al: The somatic genomic landscape of glioblastoma. Cell. 155:462–477. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M and Jiang C: Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/β-catenin pathway by scaffolding EZH2. Clin Cancer Res. 24:684–695. 2018. View Article : Google Scholar | |
Knizhnik AV, Roos WP, Nikolova T, Quiros S, Tomaszowski KH, Christmann M and Kaina B: Survival and death strategies in glioma cells: Autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One. 8:e556652013. View Article : Google Scholar : PubMed/NCBI | |
Linder S, Wiesner C and Himmel M: Degrading devices: Invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol. 27:185–211. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ulasov IV, Mijanovic O, Savchuk S, Gonzalez-Buendia E, Sonabend A, Xiao T, Timashev P and Lesniak MS: TMZ regulates GBM stemness via MMP14-DLL4-Notch3 pathway. Int J Cancer. 146:2218–2228. 2020. View Article : Google Scholar | |
Wen Q, Chen Z, Chen Z, Chen J, Wang R, Huang C and Yuan W: EphA2 affects the sensitivity of oxaliplatin by inducing EMT in oxaliplatin-resistant gastric cancer cells. Oncotarget. 8:47998–48011. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gaianigo N, Melisi D and Carbone C: EMT and treatment resistance in pancreatic cancer. Cancers (Basel). 9:1222017. View Article : Google Scholar | |
Peng F, Fan H, Li S, Peng C and Pan X: MicroRNAs in epithelial-mesenchymal transition process of cancer: potential targets for chemotherapy. Int J Mol Sci. 22:75262021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Li M, Xia P and Lu Z: HOTTIP mediated therapy resistance in glioma cells involves regulation of EMT-related miR-10b. Front Oncol. 12:8735612022. View Article : Google Scholar : PubMed/NCBI | |
Loilome W, Joshi AD, ap Rhys CM, Piccirillo S, Vescovi AL, Gallia GL and Riggins GJ: Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. J Neurooncol. 94:359–366. 2009. View Article : Google Scholar : PubMed/NCBI | |
Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, Akhavanfard S, Cahill DP, Aldape KD, Betensky RA, et al: Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell. 20:810–817. 2011. View Article : Google Scholar : PubMed/NCBI | |
Raoof S, Ruddy D, Timonia D, Damon L, Engelman J and Hata A: Abstract A142: Targeting FGFR to overcome EMT-related resistance in EGFR-mutated non-small cell lung cancer. Mol Cancer Ther. 17(1 Suppl): A1422018. View Article : Google Scholar | |
Zhang L, Zhang W, Li Y, Alvarez A, Li Z, Wang Y, Song L, Lv D, Nakano I, Hu B, et al: SHP-2-upregulated ZEB1 is important for PDGFRα-driven glioma epithelial-mesenchymal transition and invasion in mice and humans. Oncogene. 35:5641–5652. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brichkina A, Nguyen NT, Baskar R, Wee S, Gunaratne J, Robinson RC and Bulavin DV: Proline isomerisation as a novel regulatory mechanism for p38MAPK activation and functions. Cell Death Differ. 23:1592–1601. 2016. View Article : Google Scholar : PubMed/NCBI | |
Park CM, Park MJ, Kwak HJ, Lee HC, Kim MS, Lee SH, Park IC, Rhee CH and Hong SI: Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res. 66:8511–8519. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cong ZX, Wang HD, Zhou Y, Wang JW, Pan H, Zhang DD, Zhang L and Zhu L: Temozolomide and irradiation combined treatment-induced Nrf2 activation increases chemoradiation sensitivity in human glioblastoma cells. J Neurooncol. 116:41–48. 2014. View Article : Google Scholar | |
Ma L, Liu J, Zhang X, Qi J, Yu W and Gu Y: p38 MAPK-dependent Nrf2 induction enhances the resistance of glioma cells against TMZ. Med Oncol. 32:692015. View Article : Google Scholar : PubMed/NCBI | |
Carnero A, Blanco-Aparicio C, Renner O, Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 8:187–198. 2008. View Article : Google Scholar : PubMed/NCBI | |
Harder BG, Peng S, Sereduk CP, Sodoma AM, Kitange GJ, Loftus JC, Sarkaria JN and Tran NL: Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells. Mol Med. 25:492019. View Article : Google Scholar : PubMed/NCBI | |
Pridham KJ, Shah F, Hutchings KR, Sheng KL, Guo S, Liu M, Kanabur P, Lamouille S, Lewis G, Morales M, et al: Connexin 43 confers chemoresistance through activating PI3K. Oncogenesis. 11:22022. View Article : Google Scholar : PubMed/NCBI | |
Zając A, Sumorek-Wiadro J, Langner E, Wertel I, Maciejczyk A, Pawlikowska-Pawlęga B, Pawelec J, Wasiak M, Hułas-Stasiak M, Bądziul D, et al: Involvement of PI3K pathway in glioma cell resistance to temozolomide treatment. Int J Mol Sci. 22:51552021. View Article : Google Scholar | |
Zhang LH, Yin AA, Cheng JX, Huang HY, Li XM, Zhang YQ, Han N and Zhang X: TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene. 34:600–610. 2015. View Article : Google Scholar | |
Cao X, Hou J, An Q, Assaraf YG and Wang X: Towards the overcoming of anticancer drug resistance mediated by p53 mutations. Drug Resist Updat. 49:1006712020. View Article : Google Scholar | |
Hientz K, Mohr A, Bhakta-Guha D and Efferth T: The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 8:8921–8946. 2017. View Article : Google Scholar : | |
Hirose Y, Berger MS and Pieper RO: Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res. 61:5843–5849. 2001.PubMed/NCBI | |
Holder SL and Abdulkadir SA: PIM1 kinase as a target in prostate cancer: Roles in tumorigenesis, castration resistance, and docetaxel resistance. Curr Cancer Drug Targets. 14:105–114. 2014. View Article : Google Scholar | |
Wang BW, Huang CH, Liu LC, Cheng FJ, Wei YL, Lin YM, Wang YF, Wei CT, Chen Y, Chen YJ and Huang WC: Pim1 kinase inhibitors exert anti-cancer activity against HER2-positive breast cancer cells through downregulation of HER2. Front Pharmacol. 12:6146732021. View Article : Google Scholar : PubMed/NCBI | |
Trigg RM, Lee LC, Prokoph N, Jahangiri L, Reynolds CP, Amos Burke GA, Probst NA, Han M, Matthews JD, Lim HK, et al: The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nat Commun. 10:54282019. View Article : Google Scholar : PubMed/NCBI | |
Wein L and Loi S: Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC). Breast. 34(Suppl 1): S27–S30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bobustuc GC, Kassam AB, Rovin RA, Jeudy S, Smith JS, Isley B, Singh M, Paranjpe A, Srivenugopal KS and Konduri SD: MGMT inhibition in ER positive breast cancer leads to CDC2, TOP2A, AURKB, CDC20, KIF20A, Cyclin A2, cyclin B2, cyclin D1, ERα and survivin inhibition and enhances response to temozolomide. Oncotarget. 9:29727–29742. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Pan Y, Ling G, Wang S, Huang M, Jiang X and Ke Y: Escape of U251 glioma cells from temozolomide-induced senescence was modulated by CDK1/survivin signaling. Am J Transl Res. 9:2163–2180. 2017.PubMed/NCBI | |
Reich TR, Schwarzenbach C, Vilar JB, Unger S, Mühlhäusler F, Nikolova T, Poplawski A, Baymaz HI, Beli P, Christmann M and Tomicic MT: Localization matters: Nuclear-trapped survivin sensitizes glioblastoma cells to temozolomide by elevating cellular senescence and impairing homologous recombination. Cell Mol Life Sci. 78:5587–5604. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wu X, Zhao Y, Xiao Y, Zhao Y, Zhang T, Li H, Sha F, Wang Y, Deng L and Ma X: Clinical benefit of neoadjuvant anti-PD-1/PD-L1 utilization among different tumors. MedComm (2020). 2:60–68. 2021. | |
Zhou Y, Miao J, Wu H, Tang H, Kuang J, Zhou X, Peng Y, Hu D, Shi D, Deng W, et al: PD-1 and PD-L1 expression in 132 recurrent nasopharyngeal carcinoma: The correlation with anemia and outcomes. Oncotarget. 8:51210–51223. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qin T, Zeng YD, Qin G, Xu F, Lu JB, Fang WF, Xue C, Zhan JH, Zhang XK, Zheng QF, et al: High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget. 6:33972–33981. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, et al: Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 18:102019. View Article : Google Scholar : PubMed/NCBI | |
Kathuria H, Millien G, McNally L, Gower AC, Tagne JB, Cao Y and Ramirez MI: NKX21-AS1 negatively regulates CD274/PD-L1, cell-cell interaction genes, and limits human lung carcinoma cell migration. Sci Rep. 8:144182018. View Article : Google Scholar | |
Tian Y, Li L, Lin G, Wang Y, Wang L, Zhao Q, Hu Y, Yong H, Wan Y and Zhang Y: lncRNA SNHG14 promotes oncogenesis and immune evasion in diffuse large-B-cell lymphoma by sequestering miR-152-3p. Leuk Lymphoma. 62:1574–1584. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dang S, Malik A, Chen J, Qu J, Yin K, Cui L and Gu M: LncRNA SNHG15 contributes to immuno-escape of gastric cancer through targeting miR141/PD-L1. Onco Targets Ther. 13:8547–8556. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou WY, Zhang MM, Liu C, Kang Y, Wang JO and Yang XH: Long noncoding RNA LINC00473 drives the progression of pancreatic cancer via upregulating programmed death-ligand 1 by sponging microRNA-195-5p. J Cell Physiol. 234:23176–23189. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fan F, Chen K, Lu X, Li A, Liu C and Wu B: Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol Int. 15:444–458. 2021. View Article : Google Scholar | |
Peng L, Chen Y, Ou Q, Wang X and Tang N: LncRNA MIAT correlates with immune infiltrates and drug reactions in hepatocellular carcinoma. Int Immunopharmacol. 89:1070712020. View Article : Google Scholar : PubMed/NCBI | |
Mineo M, Lyons SM, Zdioruk M, von Spreckelsen N, Ferrer-Luna R, Ito H, Alayo QA, Kharel P, Giantini Larsen A, Fan WY, et al: Tumor interferon signaling is regulated by a lncRNA INCR1 transcribed from the PD-L1 locus. Mol Cell. 78:1207–1223.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wagle N, Nguyen M, Carrillo J, Truong J, Dobrawa L and Kesari S: Characterization of molecular pathways for targeting therapy in glioblastoma. Chin Clin Oncol. 9:772020. View Article : Google Scholar : PubMed/NCBI | |
Miyazaki T, Ishikawa E, Matsuda M, Sugii N, Kohzuki H, Akutsu H, Sakamoto N, Takano S and Matsumura A: Infiltration of CD163-positive macrophages in glioma tissues after treatment with anti-PD-L1 antibody and role of PI3Kγ inhibitor as a combination therapy with anti-PD-L1 antibody in in vivo model using temozolomide-resistant murine glioma-initiating cells. Brain Tumor Pathol. 37:41–49. 2020. View Article : Google Scholar : PubMed/NCBI | |
Roth P, Valavanis A and Weller M: Long-term control and partial remission after initial pseudoprogression of glioblastoma by anti-PD-1 treatment with nivolumab. Neuro Oncol. 19:454–456. 2017.PubMed/NCBI | |
Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, et al: Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 86:343–349. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jan CI, Tsai WC, Harn HJ, Shyu WC, Liu MC, Lu HM, Chiu SC and Cho DY: Predictors of response to autologous dendritic cell therapy in glioblastoma multiforme. Front Immunol. 9:7272018. View Article : Google Scholar : PubMed/NCBI | |
Hua H, Kong Q, Zhang H, Wang J, Luo T and Jiang Y: Targeting mTOR for cancer therapy. J Hematol Oncol. 12:712019. View Article : Google Scholar : PubMed/NCBI | |
Vargas-Toscano A, Nickel AC, Li G, Kamp MA, Muhammad S, Leprivier G, Fritsche E, Barker RA, Sabel M, Steiger HJ, et al: Rapalink-1 targets glioblastoma stem cells and acts synergistically with tumor treating fields to reduce resistance against temozolomide. Cancers (Basel). 12:38592020. View Article : Google Scholar | |
Zou Y, Chen M, Zhang S, Miao Z, Wang J, Lu X and Zhao X: TRPC5-induced autophagy promotes the TMZ-resistance of glioma cells via the CAMMKβ/AMPKα/mTOR pathway. Oncol Rep. 41:3413–3423. 2019.PubMed/NCBI | |
Jiang C, Shen F, Du J, Fang X, Li X, Su J, Wang X, Huang X and Liu Z: Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed Pharmacother. 97:844–850. 2018. View Article : Google Scholar | |
Liu Q, Yu W, Zhu S, Cheng K, Xu H, Lv Y, Long X, Ma L, Huang J, Sun S and Wang K: Long noncoding RNA GAS5 regulates the proliferation, migration, and invasion of glioma cells by negatively regulating miR-18a-5p. J Cell Physiol. 234:757–768. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Liu Y, Zheng J, Liu X, Chen J, Liu L, Wang P and Xue Y: GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop. Biochim Biophys Acta Mol Cell Res. 1864:1605–1617. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huo JF and Chen XB: Long noncoding RNA growth arrest-specific 5 facilitates glioma cell sensitivity to cisplatin by suppressing excessive autophagy in an mTOR-dependent manner. J Cell Biochem. 120:6127–6136. 2019. View Article : Google Scholar | |
Li G, Cai Y, Wang C, Huang M and Chen J: LncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The effect of LncRNA GAS5 on glioma cells. J Neurooncol. 143:525–536. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Xu Z, Dai S, Qian L, Sun L and Gong Z: Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp Clin Cancer Res. 35:232016. View Article : Google Scholar : PubMed/NCBI | |
Liao Y, Shen L, Zhao H, Liu Q, Fu J, Guo Y, Peng R and Cheng L: LncRNA CASC2 interacts with miR-181a to modulate glioma growth and resistance to TMZ through PTEN pathway. J Cell Biochem. 118:1889–1899. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jing H and Lee S: NF-κB in cellular senescence and cancer treatment. Mol Cells. 37:189–195. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sánchez Y, Segura V, Marín-Béjar O, Athie A, Marchese FP, González J, Bujanda L, Guo S, Matheu A and Huarte M: Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature. Nat Commun. 5:58122014. View Article : Google Scholar : PubMed/NCBI | |
Torres-Bayona S, Aldaz P, Auzmendi-Iriarte J, Saenz-Antoñanzas A, Garcia I, Arrazola M, Gerovska D, Undabeitia J, Querejeta A, Egaña L, et al: PR-LncRNA signature regulates glioma cell activity through expression of SOX factors. Sci Rep. 8:127462018. View Article : Google Scholar : PubMed/NCBI | |
Ding H, Cui L and Wang C: Long noncoding RNA LIFR-AS1 suppresses proliferation, migration and invasion and promotes apoptosis through modulating miR-4262/NF-κB pathway in glioma. Neurol Res. 43:210–219. 2021. View Article : Google Scholar | |
Li XT, Li JC, Feng M, Zhou YX and Du ZW: Novel lncRNA-ZNF281 regulates cell growth, stemness and invasion of glioma stem-like U251s cells. Neoplasma. 66:118–127. 2019. View Article : Google Scholar | |
Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R, Rosenthal M, Wen PY, Stupp R and Reifenberger G: Glioma. Nat Rev Dis Primers. 1:150172015. View Article : Google Scholar : PubMed/NCBI | |
Yang W and Gao Y: Translesion and repair DNA polymerases: Diverse structure and mechanism. Annu Rev Biochem. 87:239–261. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bailly V, Lamb J, Sung P, Prakash S and Prakash L: Specific complex formation between yeast RAD6 and RAD18 proteins: A potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev. 8:811–820. 1994. View Article : Google Scholar : PubMed/NCBI | |
Wojtaszek JL, Chatterjee N, Najeeb J, Ramos A, Lee M, Bian K, Xue JY, Fenton BA, Park H, Li D, et al: A small molecule targeting mutagenic translesion synthesis improves chemotherapy. Cell. 178:152–159.e11. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peng C, Chen Z, Wang S, Wang HW, Qiu W, Zhao L, Xu R, Luo H, Chen Y, Chen D, et al: The error-prone DNA polymerase κ promotes temozolomide resistance in glioblastoma through Rad17-dependent activation of ATR-Chk1 signaling. Cancer Res. 76:2340–2353. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vassel FM, Bian K, Walker GC and Hemann MT: Rev7 loss alters cisplatin response and increases drug efficacy in chemotherapy-resistant lung cancer. Proc Natl Acad Sci USA. 117:28922–28924. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Wang H, Zhang L, Sun C, Li H, Jiang C and Liu X: High expression of RAD18 in glioma induces radiotherapy resistance via down-regulating P53 expression. Biomed Pharmacother. 112:1085552019. View Article : Google Scholar : PubMed/NCBI | |
Rezaei O, Tamizkar KH, Sharifi G, Taheri M and Ghafouri-Fard S: Emerging role of long non-coding RNAs in the pathobiology of glioblastoma. Front Oncol. 10:6258842021. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Bai R, Liu Y, Bi H, Shi X and Qu C: Long non-coding RNA ATXN8OS promotes ferroptosis and inhibits the temozolomide-resistance of gliomas through the ADAR/GLS2 pathway. Brain Res Bull. 186:27–37. 2022.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Gao XY, Zang J, Zheng MH, Zhang YF, Yue KY, Cao XL, Cao Y, Li XX, Han H, Jiang XF and Liang L: Temozolomide treatment induces HMGB1 to promote the formation of glioma stem cells via the TLR2/NEAT1/Wnt pathway in glioblastoma. Front Cell Dev Biol. 9:6208832021. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen Y, Wang Y, Liu X, Liu Y, Li Y, Chen H, Fan C, Wu D and Yang J: Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1. J Exp Clin Cancer Res. 38:3712019. View Article : Google Scholar : PubMed/NCBI |