1
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hsu PP and Sabatini DM: Cancer cell
metabolism: Warburg and beyond. Cell. 134:703–707. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sugden MC and Holness MJ: Mechanisms
underlying regulation of the expression and activities of the
mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem.
112:139–149. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tambe Y, Hasebe M, Kim CJ, Yamamoto A and
Inoue H: The drs tumor suppressor regulates glucose metabolism via
lactate dehydrogenase-B. Mol Carcinog. 55:52–63. 2016. View Article : Google Scholar
|
6
|
Kinnaird A, Dromparis P, Saleme B, Gurtu
V, Watson K, Paulin R, Zervopoulos S, Stenson T, Sutendra G, Pink
DB, et al: Metabolic modulation of clear-cell renal cell carcinoma
with dichloroacetate, an inhibitor of pyruvate dehydrogenase
kinase. Eur Urol. 69:734–744. 2016. View Article : Google Scholar
|
7
|
Saunier E, Benelli C and Bortoli S: The
pyruvate dehydrogenase complex in cancer: An old metabolic
gatekeeper regulated by new pathways and pharmacological agents.
Int J Cancer. 138:809–817. 2016. View Article : Google Scholar
|
8
|
Leclerc D, Pham DN, Lévesque N, Truongcao
M, Foulkes WD, Sapienza C and Rozen R: Oncogenic role of PDK4 in
human colon cancer cells. Br J Cancer. 116:930–936. 2017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Trinidad AG, Whalley N, Rowlinson R,
Delpuech O, Dudley P, Rooney C and Critchlow SE: Pyruvate
dehydrogenase kinase 4 exhibits a novel role in the activation of
mutant KRAS, regulating cell growth in lung and colorectal tumour
cells. Oncogene. 36:6164–6176. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Stacpoole PW: Therapeutic targeting of the
pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase
(PDC/PDK) axis in cancer. J Natl Cancer Inst. 109:2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sutendra G and Michelakis ED: Pyruvate
dehydrogenase kinase as a novel therapeutic target in oncology.
Front Oncol. 3:382013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Qin C, Yang G, Yang J, Ren B, Wang H, Chen
G, Zhao F, You L, Wang W and Zhao Y: Metabolism of pancreatic
cancer: Paving the way to better anticancer strategies. Mol Cancer.
19:502020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Faubert B, Solmonson A and DeBerardinis
RJ: Metabolic reprogramming and cancer progression. Science.
368:eeaw54732020. View Article : Google Scholar
|
14
|
Chen M and Hang J: The expanded role of
fatty acid metabolism in cancer: New aspects and targets. Precis
Clin Med. 2:183–191. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang W, Bai L, Li W and Cui J: The lipid
metabolic landscape of cancers and new therapeutic perspectives.
Front Oncol. 10:6051542020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mustachio LM, Chelariu-Raicu A, Szekvolgyi
L and Roszik J: Targeting KRAS in cancer: Promising therapeutic
strategies. Cancers (Basel). 13:10242021. View Article : Google Scholar
|
17
|
Han CW, Jeong MS and Jang SB: Understand
KRAS and the quest for anti-cancer drugs. Cells. 10:8422021.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kaek SA, Papagiannakopoulos T, Shah YM and
Lyssiotis CA: Metabolic networks in mutant KRAS-driven tumours:
Tissue specificities and the microenvironment. Nat Rev Cancer.
21:510–525. 2021. View Article : Google Scholar
|
19
|
Muyinda IJ, Park JG, Jang EJ and Yoo BC:
KRAS, A prime mediator in pancreatic lipid synthesis through extra
mitochondrial glutamine and citrate metabolism. Int J Mol Sci.
22:50702021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tambe Y, Terado T, Kim CJ, Mukaisho K,
Yoshida S, Sugihara H, Tanaka H, Chida J, Kido H, Yamaji K, et al:
Antitumor activity of potent pyruvate dehydrogenase kinase 4
inhibitors from plants in pancreatic cancer. Mol Carcinog.
58:1726–1737. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shirasawa S, Furuse M, Yokoyama A and
Sasazuki T: Altered growth of human colon cancer cell lines
disrupted at activated Ki-ras. Science. 260:85–88. 1993. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chang L, Fang S, Chen Y, Yang Z, Yuan Y,
Zhang J, Ye L and Gu W: Inhibition of FASN suppresses the malignant
biological behavior of non-small cell lung cancer cells via
deregulating glucose metabolism and AKT/ERK pathway. Lipids Health
Dis. 18:1182019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pecot CV, Wu SY, Bellister S, Filant J,
Rupaimoole R, Hisamatsu T, Bhattacharya R, Maharaj A, Azam S,
Rodriguez-Aguayo C, et al: Therapeutic silencing of KRAS using
systemically delivered siRNAs. Mol Cancer Ther. 13:2876–2885. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Hayes JD, Dinkova-Kostova AT and Tew KD:
Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Sang-Min J, Navdeep SC and Nissim H: AMPK
regulates NADPH homeostasiss to promote tumour cell survival during
energy stress. Nature. 485:661–665. 2012. View Article : Google Scholar
|
26
|
Bueno MJ and Quintela-Fandino M: Emerging
role of fatty acid synthase in tumor initiation: Implications for
cancer prevention. Mol Cell Oncol. 7:e17093892020. View Article : Google Scholar
|
27
|
Molenaar RJ, Maciejewski JP, Wilmink JW
and van Noorden CJ: Wild-type and mutated IDH1/2 enzymes and
therapy responses. Oncogene. 37:1949–1960. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim CJ, Terado T, Tambe Y, Mukaisho K,
Kageyama S, Kawauchi A and Inoue H: Cryptotanshinone, a novel PDK4
inhibitor, suppresses bladder cancer cell invasiveness via the
mTOR/β-catenin/N-cadherin axis. Int J Oncol. 59:402021. View Article : Google Scholar
|