Effects of exosomes on tumor immunomodulation and their potential clinical applications (Review)
- Authors:
- Man Li
- Hongzhen Cai
- Ruiyi Deng
- Jin Cheng
- Yanyan Shi
-
Affiliations: Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing 100191, P.R. China, Peking University Third Hospital, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, P.R. China - Published online on: October 10, 2022 https://doi.org/10.3892/ijo.2022.5437
- Article Number: 147
This article is mentioned in:
Abstract
Hao Q, Wu Y, Wu Y, Wang P and Vadgama JV: Tumor-Derived exosomes in tumor-induced immune suppression. Int J Mol Sci. 23:14612022. View Article : Google Scholar : PubMed/NCBI | |
Fu M, Gu J, Jiang P, Qian H, Xu W and Zhang X: Exosomes in gastric cancer: Roles, mechanisms, and applications. Mol Cancer. 18:412019. View Article : Google Scholar : PubMed/NCBI | |
Gurung S, Perocheau D, Touramanidou L and Baruteau J: The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun Signal. 19:472021. View Article : Google Scholar : PubMed/NCBI | |
Whiteside TL: Tumor-Derived exosomes and their role in cancer progression. Adv Clin Chem. 74:103–141. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hurley JH and Ren X: The circuitry of cargo flux in the ESCRT pathway. J Cell Biol. 185:185–187. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hou PP and Chen HZ: Extracellular vesicles in the tumor immune microenvironment. Cancer Lett. 516:48–56. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei D, Zhan W, Gao Y, Huang L, Gong R, Wang W, Zhang R, Wu Y, Gao S and Kang T: RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 31:157–177. 2021. View Article : Google Scholar : PubMed/NCBI | |
Koh HM, Jang BG and Kim DC: Prognostic significance of Rab27 expression in solid cancer: A systematic review and meta-analysis. Sci Rep. 10:141362020. View Article : Google Scholar : PubMed/NCBI | |
Borchers AC, Langemeyer L and Ungermann C: Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol. 220:e2021051202021. View Article : Google Scholar : PubMed/NCBI | |
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18:752019. View Article : Google Scholar : PubMed/NCBI | |
van Niel G, Porto-Carreiro I, Simoes S and Raposo G: Exosomes: A common pathway for a specialized function. J Biochem. 140:13–21. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wei Z, Batagov AO, Schinelli S, Wang J, Wang Y, El Fatimy R, Rabinovsky R, Balaj L, Chen CC, Hochberg F, et al: Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun. 8:11452017. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of exosomes in cancer. J Clin Invest. 126:1208–1215. 2016. View Article : Google Scholar : PubMed/NCBI | |
He G, Peng X, Wei S, Yang S, Li X, Huang M, Tang S, Jin H, Liu J, Zhang S, et al: Exosomes in the hypoxic TME: From release, uptake and biofunctions to clinical applications. Mol Cancer. 21:192022. View Article : Google Scholar : PubMed/NCBI | |
Dorayappan KDP, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, Cohn DE and Selvendiran K: Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: A novel mechanism linking STAT3/Rab proteins. Oncogene. 37:3806–3821. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lewitowicz P, Matykiewicz J, Koziel D, Chrapek M, Horecka-Lewitowicz A and Gluszek S: CD63 and GLUT-1 overexpression could predict a poor clinical outcome in GIST: A study of 54 cases with follow-up. Gastroenterol Res Pract. 2016:64783742016. View Article : Google Scholar : PubMed/NCBI | |
Valdez SR, Patterson SI, Ezquer ME, Torrecilla M, Lama MC and Seltzer AM: Acute sublethal global hypoxia induces transient increase of GAP-43 immunoreactivity in the striatum of neonatal rats. Synapse. 61:124–137. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J and Du G: The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 11:2783–2797. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bobrie A and Théry C: Exosomes and communication between tumours and the immune system: Are all exosomes equal? Biochem Soc Trans. 41:263–267. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trams EG, Lauter CJ, Salem N Jr and Heine U: Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 645:63–70. 1981. View Article : Google Scholar : PubMed/NCBI | |
Wan Z, Gao X, Dong Y, Zhao Y, Chen X, Yang G and Liu L: Exosome-mediated cell-cell communication in tumor progression. Am J Cancer Res. 8:1661–1673. 2018.PubMed/NCBI | |
Mulcahy LA, Pink RC and Carter DR: Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 3:246412014. View Article : Google Scholar : PubMed/NCBI | |
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Shen H, Li Z, Wang T and Wang S: Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol. 12:842019. View Article : Google Scholar : PubMed/NCBI | |
Whiteside TL, Diergaarde B and Hong CS: Tumor-Derived Exosomes (TEX) and their role in immuno-oncology. Int J Mol Sci. 22:62342021. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Tan Z and Guan F: Tumor-Derived exosomes mediate the instability of cadherins and promote tumor progression. Int J Mol Sci. 20:36522019. View Article : Google Scholar : PubMed/NCBI | |
Jiang C, Zhang N, Hu X and Wang H: Tumor-associated exosomes promote lung cancer metastasis through multiple mechanisms. Mol Cancer. 20:1172021. View Article : Google Scholar : PubMed/NCBI | |
Saleem SN and Abdel-Mageed AB: Tumor-derived exosomes in oncogenic reprogramming and cancer progression. Cell Mol Life Sci. 72:1–10. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues-Junior DM, Tsirigoti C, Lim SK, Heldin CH and Moustakas A: Extracellular vesicles and transforming growth factor β signaling in cancer. Front Cell Dev Biol. 10:8499382022. View Article : Google Scholar : PubMed/NCBI | |
Hao Y, Baker D and Ten Dijke P: TGF-β-Mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 20:27672019. View Article : Google Scholar : PubMed/NCBI | |
Cho JA, Park H, Lim EH and Lee KW: Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 40:130–138. 2012.PubMed/NCBI | |
Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, Wu CY and Kuo PL: Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 36:4929–4942. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alzahrani FA, El-Magd MA, Abdelfattah-Hassan A, Saleh AA, Saadeldin IM, El-Shetry ES, Badawy AA and Alkarim S: Potential effect of exosomes derived from cancer stem cells and MSCs on progression of DEN-Induced HCC in rats. Stem Cells Int. 2018:80589792018. View Article : Google Scholar : PubMed/NCBI | |
Karabid NM, Wiedemann T, Gulde S, Mohr H, Segaran RC, Geppert J, Rohm M, Vitale G, Gaudenzi G, Dicitore A, et al: Angpt2/Tie2 autostimulatory loop controls tumorigenesis. EMBO Mol Med. 14:e143642022. View Article : Google Scholar : PubMed/NCBI | |
Du S, Qian J, Tan S, Li W, Liu P, Zhao J, Zeng Y, Xu L, Wang Z and Cai J: Tumor cell-derived exosomes deliver TIE2 protein to macrophages to promote angiogenesis in cervical cancer. Cancer Lett. 529:168–179. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Gu Y, Han Y, Zhang Q, Jiang Z, Zhang X, Huang B, Xu X, Zheng J and Cao X: Tumor Exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell. 30:243–256. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, et al: MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 109:E2110–E2116. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Xie F, Wang L, Zhang L, Zhang S, Fang M and Zhou F: The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol. 17:323–334. 2020. View Article : Google Scholar : PubMed/NCBI | |
Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E and Madjd Z: Tumor-derived exosomes: The next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology. 9:17799912020. View Article : Google Scholar : PubMed/NCBI | |
Li W, Mu D, Tian F, Hu Y, Jiang T, Han Y, Chen J, Han G and Li X: Exosomes derived from Rab27a-overexpressing tumor cells elicit efficient induction of antitumor immunity. Mol Med Rep. 8:1876–1882. 2013. View Article : Google Scholar : PubMed/NCBI | |
Diamond JM, Vanpouille-Box C, Spada S, Rudqvist NP, Chapman JR, Ueberheide BM, Pilones KA, Sarfraz Y, Formenti SC and Demaria S: Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol Res. 6:910–920. 2018. View Article : Google Scholar : PubMed/NCBI | |
Plebanek MP, Angeloni NL, Vinokour E, Li J, Henkin A, Martinez-Marin D, Filleur S, Bhowmick R, Henkin J, Miller SD, et al: Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat Commun. 8:13192017. View Article : Google Scholar : PubMed/NCBI | |
Wang M and Zhang B: The immunomodulation potential of exosomes in tumor microenvironment. J Immunol Res. 2021:37103722021. View Article : Google Scholar : PubMed/NCBI | |
Huntington ND, Cursons J and Rautela J: The cancer-natural killer cell immunity cycle. Nat Rev Cancer. 20:437–454. 2020. View Article : Google Scholar : PubMed/NCBI | |
Batista IA, Quintas ST and Melo SA: The interplay of exosomes and NK cells in cancer biology. Cancers (Basel). 13:4732021. View Article : Google Scholar : PubMed/NCBI | |
Hong CS, Sharma P, Yerneni SS, Simms P, Jackson EK, Whiteside TL and Boyiadzis M: Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Sci Rep. 7:146842017. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, Kappes JC, Barnes S, Kimberly RP, Grizzle WE and Zhang HG: Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol. 176:1375–1385. 2006. View Article : Google Scholar : PubMed/NCBI | |
Paul S and Lal G: The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol. 8:11242017. View Article : Google Scholar : PubMed/NCBI | |
Hosseini R, Sarvnaz H, Arabpour M, Ramshe SM, Asef-Kabiri L, Yousefi H, Akbari ME and Eskandari N: Cancer exosomes and natural killer cells dysfunction: Biological roles, clinical significance and implications for immunotherapy. Mol Cancer. 21:152022. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Galat V, Galat Y, Lee YKA, Wainwright D and Wu J: NK cell-based cancer immunotherapy: From basic biology to clinical development. J Hematol Oncol. 14:1–17. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pritchard A, Tousif S, Wang Y, Hough K, Khan S, Strenkowski J, Chacko BK, Darley-Usmar VM and Deshane JS: Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells. 9:13032020. View Article : Google Scholar : PubMed/NCBI | |
Baig MS, Roy A, Rajpoot S, Liu D, Savai R, Banerjee S, Kawada M, Faisal SM, Saluja R, Saqib U, et al: Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res. 69:435–451. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lei Y, Wu M and Li N: Regulation of macrophage activation and polarization by HCC-Derived Exosomal lncRNA TUC339. Int J Mol Sci. 19:29582018. View Article : Google Scholar : PubMed/NCBI | |
Panigrahi GK, Praharaj PP, Peak TC, Long J, Singh R, Rhim JS, Abd Elmageed ZY and Deep G: Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci Rep. 8:38532018. View Article : Google Scholar : PubMed/NCBI | |
Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ and Whiteside TL: Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 183:3720–3730. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rasihashemi SZ, Rezazadeh Gavgani E, Majidazar R, Seraji P, Oladghaffari M, Kazemi T and Lotfinejad P: Tumor-derived exosomal PD-L1 in progression of cancer and immunotherapy. J Cell Physiol. 237:1648–1660. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Li CW, Chan LC, Wei Y, Hsu JM, Xia W, Cha JH, Hou J, Hsu JL, Sun L and Hung MC: Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 28:862–864. 2018. View Article : Google Scholar : PubMed/NCBI | |
Himes BT, Peterson TE, de Mooij T, Garcia LMC, Jung MY, Uhm S, Yan D, Tyson J, Jin-Lee HJ, Parney D, et al: The role of extracellular vesicles and PD-L1 in glioblastoma-mediated immunosuppressive monocyte induction. Neuro Oncol. 22:967–978. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou K, Guo S, Li F, Sun Q and Liang G: Exosomal PD-L1: New insights into tumor immune Escape mechanisms and therapeutic strategies. Front Cell Dev Biol. 8:5692192020. View Article : Google Scholar : PubMed/NCBI | |
Maybruck BT, Pfannenstiel LW, Diaz-Montero M and Gastman BR: Tumor-derived exosomes induce CD8+ T cell suppressors. J Immunother Cancer. 5:652017. View Article : Google Scholar : PubMed/NCBI | |
Czystowska-Kuzmicz M, Sosnowska A, Nowis D, Ramji K, Szajnik M, Chlebowska-Tuz J, Wolinska E, Gaj P, Grazul M, Pilch Z, et al: Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun. 10:30002019. View Article : Google Scholar : PubMed/NCBI | |
Whiteside TL: The role of tumor-derived exosomes (TEX) in shaping anti-tumor immune competence. Cells. 10:30542021. View Article : Google Scholar : PubMed/NCBI | |
Azambuja JH, Ludwig N, Braganhol E and Whiteside TL: Inhibition of the adenosinergic pathway in cancer rejuvenates innate and adaptive immunity. Int J Mol Sci. 20:56982019. View Article : Google Scholar : PubMed/NCBI | |
Hosseini R, Asef-Kabiri L, Yousefi H, Sarvnaz H, Salehi M, Akbari ME and Eskandari N: The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol Cancer. 20:832021. View Article : Google Scholar : PubMed/NCBI | |
Ning Y, Shen K, Wu Q, Sun X, Bai Y, Xie Y, Pan J and Qi C: Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol Lett. 199:36–43. 2018. View Article : Google Scholar : PubMed/NCBI | |
Olejarz W, Dominiak A, Zolnierzak A, Kubiak-Tomaszewska G and Lorenc T: Tumor-Derived exosomes in immunosuppression and immunotherapy. J Immunol Res. 2020:62724982020. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Qiu W, Liu Q, Qian M, Wang S, Zhang Z, Gao X, Chen Z, Xue H and Li G: Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene. 37:4239–4259. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, et al: Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 124:2621–2633. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jones LB, Bell CR, Bibb KE, Gu L, Coats MT and Matthews QL: Pathogens and their effect on exosome biogenesis and composition. Biomedicines. 6:792018. View Article : Google Scholar : PubMed/NCBI | |
Toyofuku M, Nomura N and Eberl L: Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 17:13–24. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shimoda A, Ueda K, Nishiumi S, Murata-Kamiya N, Mukai SA, Sawada S, Azuma T, Hatakeyama M and Akiyoshi K: Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci Rep. 6:183462016. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Zhang L, Chi J, Li H, Liu X, Hu T, Li R, Guo Y, Zhang X, Wang H, et al: Helicobacter pylori infection impairs endothelial function through an exosome-mediated mechanism. J Am Heart Assoc. 9:e0141202020. View Article : Google Scholar : PubMed/NCBI | |
Oster P, Vaillant L, Riva E, McMillan B, Begka C, Truntzer C, Richard C, Leblond MM, Messaoudene M, Machremi E, et al: Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut. 71:457–466. 2022. View Article : Google Scholar : PubMed/NCBI | |
Che Y, Geng B, Xu Y, Miao X, Chen L, Mu X, Pan J, Zhang C, Zhao T, Wang C, et al: Helicobacter pylori-induced exosomal MET educates tumour-associated macrophages to promote gastric cancer progression. J Cell Mol Med. 22:5708–5719. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brennan CA and Garrett WS: Fusobacterium nucleatum-symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 17:156–166. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gholizadeh P, Eslami H and Kafil HS: Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother. 89:918–925. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo S, Chen J, Chen F, Zeng Q, Liu WL and Zhang G: Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16. Gut. Nov 10–2020.(Epub ahead of print). | |
Kapoor NR, Chadha R, Kumar S, Choedon T, Reddy VS and Kumar V: The HBx gene of hepatitis B virus can influence hepatic microenvironment via exosomes by transferring its mRNA and protein. Virus Res. 240:166–174. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Han Q, Zhao H and Zhang J: The Mechanisms of HBV–Induced hepatocellular carcinoma. J Hepatocell Carcinoma. 8:435–450. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Li S, Wu S and Chen L: Exosomes modulate the viral replication and host immune responses in HBV infection. Biomed Res Int. 2019:21039432019.PubMed/NCBI | |
Shi Y, Du L, Lv D, Li H, Shang J, Lu J, Zhou L, Bai L and Tang H: Exosomal interferon-induced transmembrane protein 2 transmitted to dendritic cells inhibits interferon alpha pathway activation and blocks anti-hepatitis B virus efficacy of exogenous interferon alpha. Hepatology. 69:2396–2413. 2019.PubMed/NCBI | |
Ye L, Zhu Z, Chen X, Zhang H, Huang J, Gu S and Zhao X: The importance of exosomal PD-L1 in cancer progression and its potential as a therapeutic target. Cells. 10:32472021. View Article : Google Scholar : PubMed/NCBI | |
Rizwan MN, Ma Y, Nenkov M, Jin L, Schröder DC, Westermann M, Gaßler N and Chen Y: Tumor-derived exosomes: Key players in non-small cell lung cancer metastasis and their implication for targeted therapy. Mol Carcinog. 61:269–280. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jing C, Cao H, Qin X, Yu S, Wu J, Wang Z, Ma R and Feng J: Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett. 15:9811–9817. 2018.PubMed/NCBI | |
Lin S, Xu Y, Gan Z, Han K, Hu H, Yao Y, Huang M and Min D: Monitoring cancer stem cells: Insights into clinical oncology. Onco Targets Ther. 9:731–740. 2016.PubMed/NCBI | |
Fatima F and Nawaz M: Stem cell-derived exosomes: Roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin J Cancer. 34:541–553. 2015. View Article : Google Scholar : PubMed/NCBI | |
Clara JA, Monge C, Yang Y and Takebe N: Targeting signalling pathways and the immune microenvironment of cancer stem cells-a clinical update. Nat Rev Clin Oncol. 17:204–232. 2020. View Article : Google Scholar : PubMed/NCBI | |
Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM and Breakefield XO: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Muller L, Muller-Haegele S, Mitsuhashi M, Gooding W, Okada H and Whiteside TL: Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Oncoimmunology. 4:e10083472015. View Article : Google Scholar : PubMed/NCBI | |
Kim DH, Kim H, Choi YJ, Kim SY, Lee JE, Sung KJ, Sung YH, Pack CG, Jung MK, Han B, et al: Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med. 51:1–13. 2019. View Article : Google Scholar | |
Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L and Blelloch R: Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 177:414–427.e13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Che X, Qu J, Hou K, Wen T, Li Z, Li C, Wang S, Xu L, Liu Y and Qu X: Exosomal PD-L1 retains immunosuppressive activity and is associated with gastric cancer prognosis. Ann Surg Oncol. 26:3745–3755. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cordonnier M, Nardin C, Chanteloup G, Derangere V, Algros MP, Arnould L, Garrido C, Aubin F and Gobbo J: Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles. 9:17108992020. View Article : Google Scholar : PubMed/NCBI | |
Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV and Filatov MV: Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 11:882013. View Article : Google Scholar : PubMed/NCBI | |
Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, Kabanov AV and Batrakova EV: Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. Nanomedicine. 14:195–204. 2018. View Article : Google Scholar : PubMed/NCBI | |
Taghikhani A, Farzaneh F, Sharifzad F, Mardpour S, Ebrahimi M and Hassan ZM: Engineered tumor-derived extracellular vesicles: Potentials in cancer immunotherapy. Front Immunol. 11:2212020. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Zeng S, Gong Z and Yan Y: Exosome-based immunotherapy: A promising approach for cancer treatment. Mol Cancer. 19:1602020. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Kalimuthu S, Gangadaran P, Oh JM, Lee HW, Baek SH, Jeong SY, Lee SW, Lee J and Ahn BC: Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. 7:2732–2745. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee YS, Kim SH, Cho JA and Kim CW: Introduction of the CIITA gene into tumor cells produces exosomes with enhanced anti-tumor effects. Exp Mol Med. 43:281–290. 2011. View Article : Google Scholar : PubMed/NCBI | |
André F, Chaput N, Schartz NE, Flament C, Aubert N, Bernard J, Lemonnier F, Raposo G, Escudier B, Hsu DH, et al: Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol. 172:2126–2136. 2004. View Article : Google Scholar : PubMed/NCBI | |
Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, et al: A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 3:92005. View Article : Google Scholar : PubMed/NCBI | |
Escudier B, Dorval T, Chaput N, André F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, et al: Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of thefirst phase I clinical trial. J Transl Med. 3:102005. View Article : Google Scholar : PubMed/NCBI | |
Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, et al: Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 5:e10710082015. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Fu C, Zhou L, Mi QS and Jiang A: DC-Derived exosomes for cancer immunotherapy. Cancers (Basel). 13:36672021. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Xiao D, Dong Z, Zhen L, Xia G, Huang X, Wang T, Guo H, Yang B, Xu C, Wu W, et al: Combined Exosomal GPC1, CD82, and Serum CA19-9 as multiplex targets: A specific, sensitive, and reproducible detection panel for the diagnosis of pancreatic cancer. Mol Cancer Res. 18:300–310. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Meng S, Di W, Xia M, Dong L, Zhao Y, Ling S, He J, Xue X, Chen X and Liu C: Amyloid-β protein and MicroRNA-384 in NCAM-Labeled exosomes from peripheral blood are potential diagnostic markers for Alzheimer's disease. CNS Neurosci Ther. 28:1093–1107. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Rong Y, Tang X, Yi K, Qi P, Hou J, Liu W, He Y, Gao X, Yuan C and Wang F: Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer. 21:452022. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Li N, Li Y, Hou S, Zhang W, Meng Z, Wang S, Jia Q, Tan J, Wang R and Zhang R: Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J Nanobiotechnology. 20:2472022. View Article : Google Scholar : PubMed/NCBI | |
Bai K, Lee CL, Liu X, Li J, Cao D, Zhang L, Hu D, Li H, Hou Y, Xu Y, et al: Human placental exosomes induce maternal systemic immune tolerance by reprogramming circulating monocytes. J Nanobiotechnology. 20:862022. View Article : Google Scholar : PubMed/NCBI | |
Song L, Luan B, Xu Q, Shi R and Wang X: microRNA-155-3p delivered by M2 macrophages-derived exosomes enhances the progression of medulloblastoma through regulation of WDR82. J Transl Med. 20:132022. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Yin Z, Qi Y, Peng H, Ma W, Wang R and Li W: Golgi phosphoprotein 3 promotes angiogenesis and sorafenib resistance in hepatocellular carcinoma via upregulating exosomal miR-494-3p. Cancer Cell Int. 22:352022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang X, Chen J, Qian D, Gao P, Qin T, Jiang T, Yi J, Xu T, Huang Y, et al: Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis. J Nanobiotechnology. 20:562022. View Article : Google Scholar : PubMed/NCBI | |
Qin Q, Song R, Du P, Gao C, Yao Q and Zhang JA: Systemic proteomic analysis reveals distinct exosomal protein profiles in rheumatoid arthritis. J Immunol Res. 2021:94217202021. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Chen L, Li XS, Li XL, Xu XD, Tai SB, Yang GL, Tang Q, Liu H, Liu SH, et al: Metabolomic identification of exosome-derived biomarkers for Schizophrenia: A large multicenter study. Schizophr Bull. 47:615–623. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kohaar I, Chen Y, Banerjee S, Borbiev T, Kuo HC, Ali A, Ravindranath L, Kagan J, Srivastava S, Dobi A, et al: A urine exosome gene expression panel distinguishes between indolent and aggressive prostate cancers at biopsy. J Urol. 205:420–425. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jahan S, Mukherjee S, Ali S, Bhardwaj U, Choudhary RK, Balakrishnan S, Naseem A, Mir SA, Banawas S, Alaidarous M, et al: Pioneer role of extracellular vesicles as modulators of cancer initiation in progression, drug therapy, and vaccine prospects. Cells. 11:4902022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yao Y, Chen X, Wu J, Gu T and Tang X: Host derived exosomes-pathogens interactions: Potential functions of exosomes in pathogen infection. Biomed Pharmacother. 108:1451–1459. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO and Skog JK: Exosome-based liquid biopsies in cancer: Opportunities and challenges. Ann Oncol. 32:466–477. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zagrean AM, Hermann DM, Opris I, Zagrean L and Popa-Wagner A: Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic Implications. Front Neurosci. 12:8112018. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Wu Z, Wang Y and Li H: Regulating the production and biological function of small extracellular vesicles: Current strategies, applications and prospects. J Nanobiotechnology. 19:4222021. View Article : Google Scholar : PubMed/NCBI | |
Rajagopal C and Harikumar KB: The origin and functions of exosomes in cancer. Front Oncol. 8:662018. View Article : Google Scholar : PubMed/NCBI |