uPAR, beyond regulating physiological functions, has orchestrated roles in cancer (Review)
- Authors:
- Liang Wang
- Xite Lin
- Pengming Sun
-
Affiliations: Fujian Key Laboratory of Women and Children's Critical Diseases Research, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China - Published online on: October 18, 2022 https://doi.org/10.3892/ijo.2022.5441
- Article Number: 151
This article is mentioned in:
Abstract
Vassalli JD, Baccino D and Belin D: A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol. 100:86–92. 1985. View Article : Google Scholar : PubMed/NCBI | |
Smith HW and Marshall CJ: Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 11:23–36. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gyetko MR, Libre EA, Fuller JA, Chen GH and Toews G: Urokinase is required for T lymphocyte proliferation and activation in vitro. J Lab Clin Med. 133:274–288. 1999. View Article : Google Scholar : PubMed/NCBI | |
Alfano M, Sidenius N, Panzeri B, Blasi F and Poli G: Urokinase-urokinase receptor interaction mediates an inhibitory signal for HIV-1 replication. Proc Natl Acad Sci USA. 99:8862–8867. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ploug MRE, Behrendt N, Jensen AL, Blasi F and Danø K: Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem. 266:1926–1933. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ploug M, Behrendt N, Løber D and Danø K: Protein structure and membrane anchorage of the cellular receptor for urokinase-type plasminogen activator. Semin Thromb Hemost. 17:183–193. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ellis V, Wun TC, Behrendt N, Rønne E and Danø K: Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors. J Biol Chem. 265:9904–9908. 1990. View Article : Google Scholar : PubMed/NCBI | |
Ploug M, Gårdsvoll H, Jørgensen TJ, Lønborg Hansen L and Danø K: Structural analysis of the interaction between urokinase-type plasminogen activator and its receptor: A potential target for anti-invasive cancer therapy. Biochem Soc Trans. 30:177–183. 2002. View Article : Google Scholar : PubMed/NCBI | |
Andreasen PA, Egelund R and Petersen HH: The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci. 57:25–40. 2000. View Article : Google Scholar : PubMed/NCBI | |
Danø K, Romer J, Nielsen BS, Bjørn S, Pyke C, Rygaard J and Lund LR: Cancer invasion and tissue remodeling-cooperation of protease systems and cell types. APMIS. 107:120–127. 1999. View Article : Google Scholar : PubMed/NCBI | |
Berkenblit A, Matulonis UA, Kroener JF, Dezube BJ, Lam GN, Cuasay LC, Brünner N, Jones TR, Silverman MH and Gold MA: A6, a urokinase plasminogen activator (uPA)-derived peptide in patients with advanced gynecologic cancer: A phase I trial. Gynecol Oncol. 99:50–57. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gold MA, Brady WE, Lankes HA, Rose PG, Kelley JL, De Geest K, Crispens MA, Resnick KE and Howell SB: A phase II study of a urokinase-derived peptide (A6) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma: A gynecologic oncology group study. Gynecol Oncol. 125:635–639. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ploug M: Structure-driven design of radionuclide tracers for non-invasive imaging of uPAR and targeted radiotherapy. The tale of a synthetic peptide antagonist. Theranostics. 3:467–476. 2013. View Article : Google Scholar : PubMed/NCBI | |
Noh H, Hong S and Huang S: Role of urokinase receptor in tumor progression and development. Theranostics. 3:487–495. 2013. View Article : Google Scholar : PubMed/NCBI | |
O'Halloran TV, Ahn R, Hankins P, Swindell E and Mazar AP: The many spaces of uPAR: Delivery of theranostic agents and nanobins to multiple tumor compartments through a single target. Theranostics. 3:496–506. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhuang X, Zhang H and Hu G: Cancer and microenvironment plasticity: Double-edged swords in metastasis. Trends Pharmacol Sci. 40:419–429. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ishii G, Ochiai A and Neri S: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 99:186–196. 2016. View Article : Google Scholar : PubMed/NCBI | |
Najafi M, Goradel NH, Farhood B, Salehi E, Solhjoo S, Toolee H, Kharazinejad E and Mortezaee K: Tumor microenvironment: Interactions and therapy. J Cell Physiol. 234:5700–5721. 2019. View Article : Google Scholar : PubMed/NCBI | |
D'Alessio S and Blasi F: The urokinase receptor as an entertainer of signal transduction. Front Biosci (Landmark Ed). 14:4575–4587. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dass K, Ahmad A, Azmi AS, Sarkar SH and Sarkar FH: Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 34:122–136. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ulisse S, Baldini E, Sorrenti S and D'Armiento M: The urokinase plasminogen activator system: A target for anti-cancer therapy. Curr Cancer Drug Targets. 9:32–71. 2009. View Article : Google Scholar : PubMed/NCBI | |
Blasi F and Sidenius N: The urokinase receptor: Focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett. 584:1923–1930. 2010. View Article : Google Scholar : PubMed/NCBI | |
Paulick MG and Bertozzi CR: The glycosylphosphatidylinositol anchor: A complex membrane-anchoring structure for proteins. Biochemistry. 47:6991–7000. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eden G, Archinti M, Furlan F, Murphy R and Degryse B: The urokinase receptor interactome. Curr Pharm Des. 17:1874–1889. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eugen-Olsen J and Giamarellos-Bourboulis EJ: suPAR: The unspecific marker for disease presence, severity and prognosis. Int J Antimicrob Agents. 46 (Suppl 1):S33–S34. 2015. View Article : Google Scholar : PubMed/NCBI | |
Desmedt S, Desmedt V, Delanghe JR, Speeckaert R and Speeckaert MM: The intriguing role of soluble urokinase receptor in inflammatory diseases. Crit Rev Clin Lab Sci. 54:117–133. 2017. View Article : Google Scholar : PubMed/NCBI | |
Loughner CL, Bruford EA, McAndrews MS, Delp EE, Swamynathan S and Swamynathan SK: Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum Genomics. 10:102016. View Article : Google Scholar : PubMed/NCBI | |
Kong HK and Park JH: Characterization and function of human Ly-6/uPAR molecules. BMB Rep. 45:595–603. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kriegbaum MC, Jacobsen B and Hald Aand Ploug M: Expression of C4.4A, a structural uPAR homolog, reflects squamous epithelial differentiation in the adult mouse and during embryogenesis. J Histochem Cytochem. 59:188–201. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hansen LV, Gårdsvoll H, Nielsen BS, Lund LR, Danø K, Jensen ON and Ploug M: Structural analysis and tissue localization of human C4.4A: A protein homologue of the urokinase receptor. Biochem J. 380:845–857. 2004. View Article : Google Scholar : PubMed/NCBI | |
Davidson B, Trope CG and Reich R: The role of the tumor stroma in ovarian cancer. Front Oncol. 4:1042014. View Article : Google Scholar : PubMed/NCBI | |
Baig MH, Adil M, Khan R, Dhadi S, Ahmad K, Rabbani G, Bashir T, Imran MA, Husain FM, Lee EJ, et al: Enzyme targeting strategies for prevention and treatment of cancer: Implications for cancer therapy. Semin Cancer Biol. 56:1–11. 2019. View Article : Google Scholar : PubMed/NCBI | |
Myöhänen HT, Stephens RW, Hedman K, Tapiovaara H, Rønne E, Høyer-Hansen G, Danø K and Vaheri A: Distribution and lateral mobility of the urokinase-receptor complex at the cell surface. J Histochem Cytochem. 41:1291–1301. 1993. View Article : Google Scholar : PubMed/NCBI | |
Eastman BM, Jo M, Webb DL, Takimoto S and Gonias SL: A transformation in the mechanism by which the urokinase receptor signals provides a selection advantage for estrogen receptor-expressing breast cancer cells in the absence of estrogen. Cell Signal. 24:1847–1855. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Xu D, Liu M, Knabe WE, Yuan C, Zhou D, Huang M and Meroueh SO: Small molecules engage hot spots through cooperative binding to inhibit a tight protein-protein interaction. Biochemistry. 56:1768–1784. 2017. View Article : Google Scholar : PubMed/NCBI | |
Høyer-Hansen G and Lund IK: Urokinase receptor variants in tissue and body fluids. Adv Clin Chem. 44:65–102. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ahn SB, Mohamedali A, Anand S, Cheruku HR, Birch D, Sowmya G, Cantor D, Ranganathan S, Inglis DW, Frank R, et al: Characterization of the interaction between heterodimeric αvβ6 integrin and urokinase plasminogen activator receptor (uPAR) using functional proteomics. J Proteome Res. 13:5956–5964. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aguirre Ghiso JA: Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene. 21:2513–2524. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kenny HA, Leonhardt P, Ladanyi A, Yamada SD, Montag A, Im HK, Jagadeeswaran S, Shaw DE, Mazar AP and Lengyel E: Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis. Clin Cancer Res. 17:459–471. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gyetko MR, Sud S, Sonstein J, Polak T, Sud A and Curtis JL: Cutting edge: Antigen-driven lymphocyte recruitment to the lung is diminished in the absence of urokinase-type plasminogen activator (uPA) receptor, but is independent of uPA. J Immunol. 167:5539–5542. 2001. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wei X, He J, Tian X, Yuan S and Sun L: Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother. 105:83–94. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ghosh AK and Vaughan DE: PAI-1 in tissue fibrosis. J Cell Physiol. 227:493–507. 2012. View Article : Google Scholar : PubMed/NCBI | |
Olson D, Pöllänen J, Høyer-Hansen G, Rønne E, Sakaguchi K, Wun TC, Appella E, Danø K and Blasi F: Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. J Biol Chem. 267:9129–9133. 1992. View Article : Google Scholar : PubMed/NCBI | |
Solberg H, Ploug M, Høyer-Hansen G, Nielsen BS and Lund LR: The murine receptor for urokinase-type plasminogen activator is primarily expressed in tissues actively undergoing remodeling. J Histochem Cytochem. 49:237–246. 2001. View Article : Google Scholar : PubMed/NCBI | |
Conforti G, Dominguez-Jimenez C, Rønne E, Høyer-Hansen G and Dejana E: Cell-surface plasminogen activation causes a retraction of in vitro cultured human umbilical vein endothelial cell monolayer. Blood. 83:994–1005. 1994. View Article : Google Scholar : PubMed/NCBI | |
Gur-Wahnon D, Mizrachi T, Maaravi-Pinto FY, Lourbopoulos A, Grigoriadis N, Higazi AA and Brenner T: The plasminogen activator system: Involvement in central nervous system inflammation and a potential site for therapeutic intervention. J Neuroinflammation. 10:1242013. View Article : Google Scholar : PubMed/NCBI | |
Diaz A, Merino P, Manrique LG, Ospina JP, Cheng L, Wu F, Jeanneret V and Yepes M: A cross talk between neuronal urokinase-type plasminogen activator (uPA) and astrocytic uPA receptor (uPAR) promotes astrocytic activation and synaptic recovery in the ischemic brain. J Neurosci. 37:10310–10322. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hohensinner PJ, Takacs N, Kaun C, Thaler B, Krychtiuk KA, Pfaffenberger S, Aliabadi A, Zuckermann A, Huber K and Wojta J: Urokinase plasminogen activator protects cardiac myocytes from oxidative damage and apoptosis via hOGG1 induction. Apoptosis. 22:1048–1055. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ploug M, Plesner T, Rønne E, Ellis V, Høyer-Hansen G, Hansen NE and Danø K: The receptor for urokinase-type plasminogen activator is deficient on peripheral blood leukocytes in patients with paroxysmal nocturnal hemoglobinuria. Blood. 79:1447–1455. 1992. View Article : Google Scholar : PubMed/NCBI | |
Sloand EM, Pfannes L, Scheinberg P, More K, Wu CO, Horne M and Young NS: Increased soluble urokinase plasminogen activator receptor (suPAR) is associated with thrombosis and inhibition of plasmin generation in paroxysmal nocturnal hemoglobinuria (PNH) patients. Exp Hematol. 36:1616–1624. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Hsu AY, Wang Y, Lin T, Sun H, Pachter JS, Groisman A, Imperioli M, Yungher FW, Hu L, et al: Mitofusin-2 regulates leukocyte adhesion and β2 integrin activation. J Leukoc Biol. 111:771–791. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gyetko MR, Sud S, Kendall T, Fuller JA, Newstead MW and Standiford TJ: Urokinase receptor-deficient mice have impaired neutrophil recruitment in response to pulmonary Pseudomonas aeruginosa infection. J Immunol. 165:1513–1519. 2000. View Article : Google Scholar : PubMed/NCBI | |
Puthusseri B, Marudamuthu A, Tiwari N, Fu J, Idell S and Shetty S: Regulation of p53-mediated changes in the uPA-fibrinolytic system and in lung injury by loss of surfactant protein C expression in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 312:L783–L796. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stewart CE and Sayers I: Urokinase receptor orchestrates the plasminogen system in airway epithelial cell function. Lung. 191:215–225. 2013. View Article : Google Scholar : PubMed/NCBI | |
Beaufort N, Leduc D, Eguchi H, Mengele K, Hellmann D, Masegi T, Kamimura T, Yasuoka S, Fend F, Chignard M and Pidard D: The human airway trypsin-like protease modulates the urokinase receptor (uPAR, CD87) structure and functions. Am J Physiol Lung Cell Mol Physiol. 292:L1263–L1272. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shetty S, Padijnayayveetil J, Tucker T, Stankowska D and Idell S: The fibrinolytic system and the regulation of lung epithelial cell proteolysis, signaling, and cellular viability. Am J Physiol Lung Cell Mol Physiol. 295:L967–L975. 2008. View Article : Google Scholar : PubMed/NCBI | |
Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R and Jensen BL: Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch. 469:1415–1423. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hayek SS, Koh KH, Grams ME, Wei C, Ko YA, Li J, Samelko B, Lee H, Dande RR, Lee HW, et al: A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat Med. 23:945–953. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Hall TR, Xu X, Yung I, Souza D, Zheng J, Schiele F, Hoffmann M, Mbow ML, Garnett JP and Li J: Targeting uPA-uPAR interaction to improve intestinal epithelial barrier integrity in inflammatory bowel disease. EBioMedicine. 75:1037582022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Yang L, Jamaluddin MS and Boyd DD: The Kruppel-like KLF4 transcription factor, a novel regulator of urokinase receptor expression, drives synthesis of this binding site in colonic crypt luminal surface epithelial cells. J Biol Chem. 279:22674–22683. 2004. View Article : Google Scholar : PubMed/NCBI | |
Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, Mansilla-Soto J, Boyer JA, Li X, Giavridis T, et al: Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 583:127–132. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lv T, Zhao Y, Jiang X, Yuan H, Wang H, Cui X, Xu J, Zhao J and Wang J: uPAR: An essential factor for tumor development. J Cancer. 12:7026–7040. 2021. View Article : Google Scholar : PubMed/NCBI | |
Laurenzana A, Chillà A, Luciani C, Peppicelli S, Biagioni A, Bianchini F, Tenedini E, Torre E, Mocali A, Calorini L, et al: uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells. Int J Cancer. 141:1190–1200. 2017. View Article : Google Scholar : PubMed/NCBI | |
Biagioni A, Laurenzana A, Chillà A, Del Rosso M, Andreucci E, Poteti M, Bani D, Guasti D, Fibbi G and Margheri F: uPAR knockout results in a deep glycolytic and OXPHOS reprogramming in melanoma and colon carcinoma cell lines. Cells. 9:3082020. View Article : Google Scholar : PubMed/NCBI | |
Flores-López LA, Martínez-Hernández MG, Viedma-Rodríguez R, Díaz-Flores M and Baiza-Gutman LA: High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell Oncol (Dordr). 39:365–378. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
Csiszar A, Kutay B, Wirth S, Schmidt U, Macho-Maschler S, Schreiber M, Alacakaptan M, Vogel GF, Aumayr K, Huber LA and Beug H: Interleukin-like epithelial-to-mesenchymal transition inducer activity is controlled by proteolytic processing and plasminogen-urokinase plasminogen activator receptor system-regulated secretion during breast cancer progression. Breast Cancer Res. 16:4332014. View Article : Google Scholar : PubMed/NCBI | |
Ragone C, Minopoli M, Ingangi V, Botti G, Fratangelo F, Pessi A, Stoppelli MP, Ascierto PA, Ciliberto G, Motti ML and Carriero MV: Targeting the cross-talk between urokinase receptor and Formyl peptide receptor type 1 to prevent invasion and trans-endothelial migration of melanoma cells. J Exp Clin Cancer Res. 36:1802017. View Article : Google Scholar : PubMed/NCBI | |
Qu M, Yu J, Liu H, Ren Y, Ma C, Bu X and Lan Q: The candidate tumor suppressor gene SLC8A2 inhibits invasion, angiogenesis and growth of glioblastoma. Mol Cells. 40:761–772. 2017.PubMed/NCBI | |
Yang QX, Zhong S, He L, Jia XJ, Tang H, Cheng ST, Ren JH, Yu HB, Zhou L, Zhou HZ, et al: PBK overexpression promotes metastasis of hepatocellular carcinoma via activating ETV4-uPAR signaling pathway. Cancer Lett. 452:90–102. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Zhang H, Lu A, Zhou Z, Zhong M, Shen D, Wang X and Zhu Z: Effect of urokinase-type plasminogen activator system in gastric cancer with peritoneal metastasis. Oncol Lett. 11:4208–4216. 2016. View Article : Google Scholar : PubMed/NCBI | |
Su B, Su J, He H, Wu Y, Xia H, Zeng X, Dai W, Ai X, Ling H, Jiang H and Su Q: Identification of potential targets for diallyl disulfide in human gastric cancer MGC-803 cells using proteomics approaches. Oncol Rep. 33:2484–2894. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alpízar-Alpízar W, Skindersoe ME, Rasmussen L, Kriegbaum MC, Christensen IJ, Lund IK, Illemann M, Laerum OD, Krogfelt KA, Andersen LP and Ploug M: Helicobacter pylori colonization drives urokinase receptor (uPAR) expression in murine gastric epithelium during early pathogenesis. Microorganisms. 8:10192020. View Article : Google Scholar : PubMed/NCBI | |
Beleva E, Stoencheva S, Deneva T, Nenova I and Grudeva-Popova Z: Assessment of clinical utility and predictive potential of pre-chemotherapy soluble urokinase plasminogen activator receptor-observational single center study. Bosn J Basic Med Sci. Sep 8–2022.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Bifulco K, Longanesi-Cattani I, Gala M, DI Carluccio G, Masucci MT, Pavone V, Lista L, Arra C, Stoppelli MP and Carriero MV: The soluble form of urokinase receptor promotes angiogenesis through its Ser88-Arg-Ser-Arg-Tyr92 chemotactic sequence. J Thromb Haemost. 8:2789–2799. 2010. View Article : Google Scholar : PubMed/NCBI | |
Poettler M, Unseld M, Mihaly-Bison J, Uhrin P, Koban F, Binder BR, Zielinski CC and Prager GW: The urokinase receptor (CD87) represents a central mediator of growth factor-induced endothelial cell migration. Thromb Haemost. 108:357–366. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boas SEM, Carvalho J, van den Broek M, Weijers EM, Goumans MJ, Koolwijk P and Merks RMH: A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants. PLoS Comput Biol. 14:e10062392018. View Article : Google Scholar : PubMed/NCBI | |
Unseld M, Chilla A, Pausz C, Mawas R, Breuss J, Zielinski C, Schabbauer G and Prager GW: PTEN expression in endothelial cells is down-regulated by uPAR to promote angiogenesis. Thromb Haemost. 114:379–389. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jing Y, Tong C, Zhang J, Nakamura T, Iankov I, Russell SJ and Merchan JR: Tumor and vascular targeting of a novel oncolytic measles virus retargeted against the urokinase receptor. Cancer Res. 69:1459–1468. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jing Y, Chavez V, Ban Y, Acquavella N, El-Ashry D, Pronin A, Chen X and Merchan JR: Molecular effects of stromal-selective targeting by uPAR-retargeted oncolytic virus in breast cancer. Mol Cancer Res. 15:1410–1420. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pyke C, Graem N, Ralfkiaer E, Rønne E, Høyer-Hansen G, Brünner N and Danø K: Receptor for urokinase is present in tumor-associated macrophages in ductal breast carcinoma. Cancer Res. 53:1911–1915. 1993.PubMed/NCBI | |
Berg D, Wolff C, Malinowsky K, Tran K, Walch A, Bronger H, Schuster T, Höfler H and Becker KF: Profiling signalling pathways in formalin-fixed and paraffin-embedded breast cancer tissues reveals cross-talk between EGFR, HER2, HER3 and uPAR. J Cell Physiol. 227:204–212. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li C, Cao S, Liu Z, Ye X, Chen L and Meng S: RNAi-mediated downregulation of uPAR synergizes with targeting of HER2 through the ERK pathway in breast cancer cells. Int J Cancer. 127:1507–1516. 2010. View Article : Google Scholar : PubMed/NCBI | |
Desai A, Xu J, Aysola K, Qin Y, Okoli C, Hariprasad R, Chinemerem U, Gates C, Reddy A, Danner O, et al: Epithelial ovarian cancer: An overview. World J Transl Med. 3:1–8. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Kim B and Song YS: Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci. 107:1173–1178. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cho KR and Shih IeM: Ovarian cancer. Annu Rev Pathol. 4:287–313. 2009. View Article : Google Scholar : PubMed/NCBI | |
Al-Hassan NN, Behzadian A, Caldwell R, Ivanova VS, Syed V, Motamed K and Said NA: Differential roles of uPAR in peritoneal ovarian carcinomatosis. Neoplasia. 14:259–270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chambers SK, Gertz RE Jr, Ivins CM and Kacinski BM: The significance of urokinase-type plasminogen activator, its inhibitors, and its receptor in ascites of patients with epithelial ovarian cancer. Cancer. 75:1627–1633. 1995. View Article : Google Scholar : PubMed/NCBI | |
van Dam PA, Coelho A and Rolfo C: Is there a role for urokinase-type plasminogen activator inhibitors as maintenance therapy in patients with ovarian cancer? Eur J Surg Oncol. 43:252–257. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuhn W, Schmalfeldt B, Reuning U, Pache L, Berger U, Ulm K, Harbeck N, Späthe K, Dettmar P, Höfler H, et al: Prognostic significance of urokinase (uPA) and its inhibitor PAI-1 for survival in advanced ovarian carcinoma stage FIGO IIIc. Br J Cancer. 79:1746–1751. 1999. View Article : Google Scholar : PubMed/NCBI | |
Dorn J, Harbeck N, Kates R, Gkazepis A, Scorilas A, Soosaipillai A, Diamandis E, Kiechle M, Schmalfeldt B and Schmitt M: Impact of expression differences of kallikrein-related peptidases and of uPA and PAI-1 between primary tumor and omentum metastasis in advanced ovarian cancer. Ann Oncol. 22:877–883. 2011. View Article : Google Scholar : PubMed/NCBI | |
Du J, Li Y, Lv S, Wang Q, Sun C, Dong X, He M, Ulain Q, Yuan Y, Tuo X, et al: Endometrial sampling devices for early diagnosis of endometrial lesions. J Cancer Res Clin Oncol. 142:2515–2522. 2016. View Article : Google Scholar : PubMed/NCBI | |
Morice P, Leary A, Creutzberg C, Abu-Rustum N and Darai E: Endometrial cancer. Lancet. 387:1094–1108. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chiu HC, Li CJ, Yiang GT, Tsai AP and Wu MY: Epithelial to mesenchymal transition and cell biology of molecular regulation in endometrial carcinogenesis. J Clin Med. 8:4392019. View Article : Google Scholar : PubMed/NCBI | |
Sorosky JI: Endometrial cancer. Obstet Gynecol. 120:383–397. 2012. View Article : Google Scholar : PubMed/NCBI | |
Prifti S, Zourab Y, Koumouridis A, Bohlmann M, Strowitzki T and Rabe T: Role of integrins in invasion of endometrial cancer cell lines. Gynecol Oncol. 84:12–20. 2002. View Article : Google Scholar : PubMed/NCBI | |
Memarzadeh S, Kozak KR, Chang L, Natarajan S, Shintaku P, Reddy ST and Farias-Eisner R: Urokinase plasminogen activator receptor: Prognostic biomarker for endometrial cancer. Proc Natl Acad Sci USA. 99:10647–10652. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tecimer C, Doering DL, Goldsmith LJ, Meyer JS, Abdulhay G and Wittliff JL: Clinical relevance of urokinase-type plasminogen activator, its receptor, and its inhibitor type 1 in endometrial cancer. Gynecol Oncol. 80:48–55. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fredstorp-Lidebring M, Bendahl PO, Brünner N, Casslén B, Högberg T, Långström-Einarsson E, Willén R and Fernö M: Urokinase plasminogen activator and its inhibitor, PAI-1, in association with progression-free survival in early stage endometrial cancer. Eur J Cancer. 37:2339–2348. 2001. View Article : Google Scholar : PubMed/NCBI | |
Makieva S, Giacomini E, Ottolina J, Sanchez AM, Papaleo E and Viganò P: Inside the endometrial cell signaling subway: Mind the Gap(s). Int J Mol Sci. 19:24772018. View Article : Google Scholar : PubMed/NCBI | |
Rider V, Isuzugawa K, Twarog M, Jones S, Cameron B, Imakawa K and Fang J: Progesterone initiates Wnt-beta-catenin signaling but estradiol is required for nuclear activation and synchronous proliferation of rat uterine stromal cells. J Endocrinol. 191:537–548. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sahebali S, Van den Eynden G, Murta EF, Michelin MA, Cusumano P, Petignat P and Bogers JJ: Stromal issues in cervical cancer: A review of the role and function of basement membrane, stroma, immune response and angiogenesis in cervical cancer development. Eur J Cancer Prev. 19:204–215. 2010. View Article : Google Scholar : PubMed/NCBI | |
Smola S: Immunopathogenesis of HPV-associated cancers and prospects for immunotherapy. Viruses. 9:254–270. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jing J, Zheng S, Han C, Du L, Guo Y and Wang P: Evaluating the value of uPAR of serum and tissue on patients with cervical cancer. J Clin Lab Anal. 26:16–21. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sasaki T, Nishi H, Nagata C, Nagai T, Nagao T, Terauchi F and Isaka K: A retrospective study of urokinase-type plasminogen activator receptor (uPAR) as a prognostic factor in cancer of the uterine cervix. Int J Clin Oncol. 19:1059–1064. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nishi H, Sasaki T, Nagamitsu Y, Terauchi F, Nagai T, Nagao T and Isaka K: Hypoxia inducible factor-1 mediates upregulation of urokinase-type plasminogen activator receptor gene transcription during hypoxia in cervical cancer cells. Oncol Rep. 35:992–998. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chaudary N and Hill RP: Increased expression of metastasis-related genes in hypoxic cells sorted from cervical and lymph nodal xenograft tumors. Lab Invest. 89:587–596. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Takahashi J, et al: Decreased expression of the plasminogen activator inhibitor type 1 is involved in degradation of extracellular matrix surrounding cervical cancer stem cells. Int J Oncol. 48:829–835. 2016. View Article : Google Scholar : PubMed/NCBI | |
Duriseti S, Goetz DH, Hostetter DR, LeBeau AM, Wei Y and Craik CS: Antagonistic anti-urokinase plasminogen activator receptor (uPAR) antibodies significantly inhibit uPAR-mediated cellular signaling and migration. J Biol Chem. 285:26878–26888. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Cai Y, Wei Y, Donate F, Juarez J, Parry G, Chen L, Meehan EJ, Ahn RW, Ugolkov A, et al: Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM). PLoS One. 9:e853492014. View Article : Google Scholar : PubMed/NCBI | |
Van Buren G II, Gray MJ, Dallas NA, Xia L, Lim SJ, Fan F, Mazar AP and Ellis LM: Targeting the urokinase plasminogen activator receptor with a monoclonal antibody impairs the growth of human colorectal cancer in the liver. Cancer. 115:3360–3368. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rabbani SA, Ateeq B, Arakelian A, Valentino ML, Shaw DE, Dauffenbach LM, Kerfoot CA and Mazar AP: An anti-urokinase plasminogen activator receptor antibody (ATN-658) blocks prostate cancer invasion, migration, growth, and experimental skeletal metastasis in vitro and in vivo. Neoplasia. 12:778–788. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yang R, Zhao L, Zhang X, Xu T and Cui M: Basing on uPAR-binding fragment to design chimeric antigen receptors triggers antitumor efficacy against uPAR expressing ovarian cancer cells. Biomed Pharmacother. 117:1091732019. View Article : Google Scholar : PubMed/NCBI | |
Qin L, Wang L, Zhang J, Zhou H, Yang Z, Wang Y, Cai W, Wen F, Jiang X, Zhang T, et al: Therapeutic strategies targeting uPAR potentiate anti-PD-1 efficacy in diffuse-type gastric cancer. Sci Adv. 8:eabn37742022. View Article : Google Scholar : PubMed/NCBI | |
Su M, Chang W, Cui M, Lin Y, Wu S and Xu T: Expression and anticancer activity analysis of recombinant human uPA1-43-melittin. IntJ Oncol. 46:619–626. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hall WA and Vallera DA: Efficacy of antiangiogenic targeted toxins against glioblastoma multiforme. Neurosurg Focus. 20:E232006. View Article : Google Scholar : PubMed/NCBI | |
Todhunter DA, Hall WA, Rustamzadeh E, Shu Y, Doumbia SO and Vallera DA: A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng Des Sel. 17:157–164. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vallera DA, Li C, Jin N, Panoskaltsis-Mortari A and Hall WA: Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst. 94:597–606. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Xu Q, Dong X, Cao L, Huang X, Hu Q and Hua ZC: A hybrid protein comprising ATF domain of pro-UK and VAS, an angiogenesis inhibitor, is a potent candidate for targeted cancer therapy. Int J Cancer. 123:942–950. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takei Y, Mizukami H, Saga Y, Kobayashi H and Suzuki M, Matsushita T, Ozawa K and Suzuki M: Overexpression of a hybrid gene consisting of the amino-terminal fragment of urokinase and carboxyl-terminal domain of bikunin suppresses invasion and migration of human ovarian cancer cells in vitro. Int J Cancer. 113:54–58. 2005. View Article : Google Scholar : PubMed/NCBI | |
Errico Provenzano A, Posteri R, Giansanti F, Angelucci F, Flavell SU, Flavell DJ, Fabbrini MS, Porro D, Ippoliti R, Ceriotti A, et al: Optimization of construct design and fermentation strategy for the production of bioactive ATF-SAP, a saporin based anti-tumoral uPAR-targeted chimera. Microb Cell Fact. 15:1942016. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Liu X, Sunchen S, Liu M, Shen C, Wu J, Zhao W, Yu B and Liu J: A novel tumor-activated ALA fusion protein for specific inhibition on the growth and invasion of breast cancer cells MDA-MB-231. Drug Deliv. 24:1811–1817. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schmitt M, Harbeck N, Brünner N, Jänicke F, Meisner C, Mühlenweg B, Jansen H, Dorn J, Nitz U, Kantelhardt EJ and Thomssen C: Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn. 11:617–634. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Watanabe T, Nishimoto T, Takihara T, Mlakar L, Nguyen XX, Sanderson M, Su Y, Chambers RA and Feghali-Bostwick C: E4 engages uPAR and enolase-1 and activates urokinase to exert antifibrotic effects. JCI Insight. 6:e1449352021. View Article : Google Scholar : PubMed/NCBI | |
Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, Staley CA, Wang YA, Mao H and Yang L: Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics. 7:1689–16704. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kriegbaum MC, Persson M, Haldager L, Alpízar-Alpízar W, Jacobsen B, Gårdsvoll H, Kjær A and Ploug M: Rational targeting of the urokinase receptor (uPAR): Development of antagonists and non-invasive imaging probes. Curr Drug Targets. 12:1711–1728. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carlsen EA, Loft M, Loft A, Berthelsen AK, Langer SW, Knigge U and Kjaer A: Prospective phase II trial of prognostication by 68Ga-NOTA-AE105 uPAR PET in patients with neuroendocrine neoplasms: Implications for uPAR targeted therapy. J Nucl Med. 63:1371–1377. 2022.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Oh F, Modiano JF, Bachanova V and Vallera DA: Bispecific targeting of EGFR and urokinase receptor (uPAR) using ligand-targeted toxins in solid tumors. Biomolecules. 10:9562020. View Article : Google Scholar : PubMed/NCBI | |
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y and Guo DY: Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med. 20:1352022. View Article : Google Scholar : PubMed/NCBI | |
Metrangolo V, Ploug M and Engelholm LH: The urokinase receptor (uPAR) as a ‘trojan horse’ in targeted cancer therapy: Challenges and opportunities. Cancers (Basel). 13:53762021. View Article : Google Scholar : PubMed/NCBI |