1
|
Mizuta K, Matsubara T, Goto A, Addison WN,
Nakatomi M, Matsuo K, Tada-Shigeyama Y, Yaginuma T, Honda H,
Yoshioka I and Kokabu S: Plectin promotes tumor formation by B16
mouse melanoma cells via regulation of Rous sarcoma oncogene
activity. BMC Cancer. 22:9362022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang E, Liu Y, Xu C and Liu J:
Antiproliferative and proapoptotic activities of anthocyanin and
anthocyanidin extracts from blueberry fruits on B16-F10 melanoma
cells. Food Nutr Res. 61:13253082017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Emens LA, Ascierto PA, Darcy PK, Demaria
S, Eggermont AMM, Redmond WL, Seliger B and Marincola FM: Cancer
immunotherapy: Opportunities and challenges in the rapidly evolving
clinical landscape. Eur J Cancer. 81:116–129. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Navarro C, Ortega A, Santeliz R, Garrido
B, Chacín M, Galban N, Vera I, De Sanctis JB and Bermúdez V:
Metabolic reprogramming in cancer cells: Emerging molecular
mechanisms and novel therapeutic approaches. Pharmaceutics.
14:13032022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhao Q, Lin X and Wang G: Targeting
SREBP-1-mediated lipogenesis as potential strategies for cancer.
Front Oncol. 12:9523712022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li J, Shen H, Owens GK and Guo LW: SREBP1
regulates Lgals3 activation in response to cholesterol loading. Mol
Ther Nucleic Acids. 28:892–909. 2022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bindesboll C, Aas A, Ogmundsdottir MH,
Pankiv S, Reine T, Zoncu R and Simonsen A: NBEAL1 controls SREBP2
processing and cholesterol metabolism and is a susceptibility locus
for coronary artery disease. Sci Rep. 10:45282020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Luo H, Chen CY, Li X, Zhang X, Su CW, Liu
Y, Cao T, Hao L, Wang M and Kang JX: Increased lipogenesis is
critical for self-renewal and growth of breast cancer stem cells:
Impact of omega-3 fatty acids. Stem Cells. 39:1660–1670. 2021.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Kitamura K, Erlangga JS, Tsukamoto S,
Sakamoto Y, Mabashi-Asazuma H and Iida K: Daidzein promotes the
expression of oxidative phosphorylation- and fatty acid
oxidation-related genes via an estrogen-related receptor alpha
pathway to decrease lipid accumulation in muscle cells. J Nutr
Biochem. 77:1083152020. View Article : Google Scholar
|
10
|
Hu B, Lin JZ, Yang XB and Sang XT:
Aberrant lipid metabolism in hepatocellular carcinoma cells as well
as immune microenvironment: A review. Cell Prolif. 53:e127722020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Simeone P, Tacconi S, Longo S, Lanuti P,
Bravaccini S, Pirini F, Ravaioli S, Dini L and Giudetti AM:
Expanding roles of de novo lipogenesis in breast cancer. Int J
Environ Res Public Health. 18:35752021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhao S, Torres A, Henry RA, Trefely S,
Wallace M, Lee JV, Carrer A, Sengupta A, Campbell SL, Kuo YM, et
al: ATP-citrate lyase controls a glucose-to-acetate metabolic
switch. Cell Rep. 17:1037–1052. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ramapriyan R, Caetano MS, Barsoumian HB,
Mafra ACP, Zambalde EP, Menon H, Tsouko E, Welsh JW and Cortez MA:
Altered cancer metabolism in mechanisms of immunotherapy
resistance. Pharmacol Ther. 195:162–171. 2019. View Article : Google Scholar
|
14
|
Welte MA: Expanding roles for lipid
droplets. Curr Biol. 25:R470–R481. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Todisco S, Santarsiero A, Convertini P, De
Stefano G, Gilio M, Iacobazzi V and Infantino V: PPAR alpha as a
metabolic modulator of the liver: Role in the pathogenesis of
nonalcoholic steatohepatitis (NASH). Biology (Basel).
11:7922022.PubMed/NCBI
|
16
|
Thiam AR, Farese RV Jr and Walther TC: The
biophysics and cell biology of lipid droplets. Nat Rev Mol Cell
Biol. 14:775–786. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hashemi HF and Goodman JM: The life cycle
of lipid droplets. Curr Opin Cell Biol. 33:119–124. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Cartwright BR, Binns DD, Hilton CL, Han S,
Gao Q and Goodman JM: Seipin performs dissectible functions in
promoting lipid droplet biogenesis and regulating droplet
morphology. Mol Biol Cell. 26:726–739. 2015. View Article : Google Scholar :
|
19
|
Shen T, Duan C, Chen B, Li M, Ruan Y, Xu
D, Shi D, Yu D, Li J and Wang C: Tremella fuciformis polysaccharide
suppresses hydrogen peroxide-triggered injury of human skin
fibroblasts via upregulation of SIRT1. Mol Med Rep. 16:1340–1346.
2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Terrazas C, Oghumu S, Varikuti S,
Martinez-Saucedo D, Beverley SM and Satoskar AR: Uncovering
Leishmania-macrophage interplay using imaging flow cytometry. J
Immunol Methods. 423:93–98. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee YT, Lim SH, Lee B, Kang I and Yeo EJ:
Compound C Inhibits B16-F1 tumor growth in a syngeneic mouse model
via the blockage of cell cycle progression and angiogenesis.
Cancers (Basel). 11:8232019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Steinbusch LK, Schwenk RW, Ouwens DM,
Diamant M, Glatz JF and Luiken JJ: Subcellular trafficking of the
substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol
Life Sci. 68:2525–2538. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Romanauska A and Kohler A: The inner
nuclear membrane is a metabolically active territory that generates
nuclear lipid droplets. Cell. 174:700–715.e718. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chiu CH, Chiu KC and Yang LC: Amelioration
of obesity in mice fed a high-fat diet with uronic acid-rich
polysaccharides derived from tremella fuciformis. Polymers (Basel).
14:15142022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shao W and Espenshade PJ: Expanding roles
for SREBP in metabolism. Cell Metab. 16:414–419. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Guo D, Bell EH, Mischel P and Chakravarti
A: Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr
Pharm Des. 20:2619–2626. 2014. View Article : Google Scholar :
|
28
|
Queiroz EA, Fortes ZB, da Cunha MA,
Barbosa AM, Khaper N and Dekker RF: Antiproliferative and
pro-apoptotic effects of three fungal exocellular beta-glucans in
MCF-7 breast cancer cells is mediated by oxidative stress,
AMP-activated protein kinase (AMPK) and the Forkhead transcription
factor, FOXO3a. Int J Biochem Cell Biol. 67:14–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim I and He YY: Targeting the
AMP-activated protein kinase for cancer prevention and therapy.
Front Oncol. 3:1752013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Li Y, Xu S, Mihaylova MM, Zheng B, Hou X,
Jiang B, Park O, Luo Z, Lefai E, Shyy JYJ, et al: AMPK
phosphorylates and inhibits SREBP activity to attenuate hepatic
steatosis and atherosclerosis in diet-induced insulin-resistant
mice. Cell Metab. 13:376–388. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rigel J, Kishton, Carson E, Cohen S,
Gerriets VA, Siska PJ, Macintyre AN, Goraksha-Hicks P, de Cubas AA,
Liu T, et al: AMPK is essential to balance glycolysis and
mitochondrial metabolism to control T-ALL cell stress and survival.
Cell Metab. 12:649–662. 2016.
|
32
|
Jeon SM, Chandel NS and Hay N: AMPK
regulates NADPH homeostasis to promote tumour cell survival during
energy stress. Nature. 485:661–665. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Flori E, Rosati E, Cardinali G, Kovacs D,
Bellei B, Picardo M and Maresca V: The α-melanocyte stimulating
hormone/peroxisome proliferator activated receptor-γ pathway
down-regulates proliferation in melanoma cell lines. J Exp Clin
Cancer Res. 36:1422017. View Article : Google Scholar
|
34
|
Cheng C, Geng F, Cheng X and Guo D: Lipid
metabolism reprogramming and its potential targets in cancer.
Cancer Commun (Lond). 38:272018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wu Q, Li B, Li Z, Li J and Sun S and Sun
S: Cancer-associated adipocytes: Key players in breast cancer
progression. J Hematol Oncol. 12:952019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Martin P: Cancer cachexia syndrome:
Reflecting on 20 years of providing cancer cachexia care as the
leader of an interdisciplinary team in an Australian cancer center.
Asia Pac J Oncol Nurs. 9:1000702022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ryan DG, Murphy MP, Frezza C, Prag HA,
Chouchani ET, O'Neill LA and Mills EL: Coupling Krebs cycle
metabolites to signalling in immunity and cancer. Nat Metab.
1:16–33. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bartolacci C, Andreani C, Vale G, Berto S,
Melegari M, Crouch AC, Baluya DL, Kemble G, Hodges K, Starrett J,
et al: Targeting de novo lipogenesis and the Lands cycle induces
ferroptosis in KRAS-mutant lung cancer. Nat Commun. 13:43272022.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Li L, Che L, Tharp KM, Park HM, Pilo MG,
Cao D, Cigliano A, Latte G, Xu Z, Ribback S, et al: Differential
requirement for de novo lipogenesis in cholangiocarcinoma and
hepatocellular carcinoma of mice and humans. Hepatology.
63:1900–1913. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zaidi N, Lupien L, Kuemmerle NB, Kinlaw
WB, Swinnen JV and Smans K: Lipogenesis and lipolysis: The pathways
exploited by the cancer cells to acquire fatty acids. Prog Lipid
Res. 52:585–589. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rizzo AM, Colombo I, Montorfano G, Zava S
and Corsetto PA: Exogenous fatty acids modulate ER lipid
composition and metabolism in breast cancer cells. Cells.
10:1752021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Dondossola E, Dobroff AS, Marchio S,
Cardó-Vila M, Hosoya H, Libutti SK, Corti A, Sidman RL, Arap W and
Pasqualini R: Self-targeting of TNF-releasing cancer cells in
preclinical models of primary and metastatic tumors. Proc Natl Acad
Sci USA. 113:2223–2228. 2016. View Article : Google Scholar : PubMed/NCBI
|