
Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review)
- Authors:
- Yuxiang Chen
- Mo Chen
- Kai Deng
-
Affiliations: Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: December 27, 2022 https://doi.org/10.3892/ijo.2022.5472
- Article Number: 24
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu C, Zhu S, Liang X, Zhang Q, Luo X, Yuan L and Song L: PD-1/PD-L1 immune checkpoint blockade-based combinational treatment: Immunotherapeutic amplification strategies against colorectal cancer. Int Immunopharmacol. 96:1076072021. View Article : Google Scholar : PubMed/NCBI | |
Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, van de Velde CJ and Watanabe T: Colorectal cancer. Nat Rev Dis Primers. 1:150652015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Wang X: Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 13:1652020. View Article : Google Scholar | |
Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Xu X, Chen D, Zhao F and Wang W: Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother. 110:473–481. 2019. View Article : Google Scholar | |
Krishnamurthy N and Kurzrock R: Targeting the Wnt/betacatenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 62:50–60. 2018. View Article : Google Scholar | |
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brenner H, Kloor M and Pox CP: Colorectal cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar | |
Lee YH, Kung PT, Wang YH, Kuo WY, Kao SL and Tsai WC: Effect of length of time from diagnosis to treatment on colorectal cancer survival: A population-based study. PLoS One. 14:e02104652019. View Article : Google Scholar : PubMed/NCBI | |
Banerjee A, Pathak S, Subramanium VD, G D, Murugesan R and Verma RS: Strategies for targeted drug delivery in treatment of colon cancer: Current trends and future perspectives. Drug Discov Today. 22:1224–1232. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI | |
Payandeh Z, Khalili S, Somi MH, Mard-Soltani M, Baghbanzadeh A, Hajiasgharzadeh K, Samadi N and Baradaran B: PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol. 235:5461–5475. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y and Freeman GJ: The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov. 5:16–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al: Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 18:1182–1191. 2017. View Article : Google Scholar : PubMed/NCBI | |
Silva VR, Santos LS, Dias RB, Quadros CA and Bezerra DP: Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond). 41:1275–1313. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI | |
Voorneveld PW, Kodach LL, Jacobs RJ, van Noesel CJ, Peppelenbosch MP, Korkmaz KS, Molendijk I, Dekker E, Morreau H, van Pelt GW, et al: The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. Br J Cancer. 112:122–130. 2015. View Article : Google Scholar : | |
Nusse R and Clevers H: Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duchartre Y, Kim YM and Kahn M: The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 99:141–149. 2016. View Article : Google Scholar : PubMed/NCBI | |
Taciak B, Pruszynska I, Kiraga L, Bialasek M and Krol M: Wnt signaling pathway in development and cancer. J Physiol Pharmacol. 69:Jul 4–2018.Epub ahead of print. PubMed/NCBI | |
Wang D, Zhang Q, Li F, Wang C, Yang C and Yu H: β-TrCP-mediated ubiquitination and degradation of Dlg5 regulates hepatocellular carcinoma cell proliferation. Cancer Cell Int. 19:2982019. View Article : Google Scholar | |
DeBruine ZJ, Xu HE and Melcher K: Assembly and architecture of the Wnt/β-catenin signalosome at the membrane. Br J Pharmacol. 174:4564–4574. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qi J, Lee HJ, Saquet A, Cheng XN, Shao M, Zheng JJ and Shi DL: Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/β-catenin and Wnt/planar cell polarity (PCP) signaling pathways. J Biol Chem. 292:5898–5908. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schatoff EM, Leach BI and Dow LE: Wnt signaling and colorectal cancer. Curr Colorectal Cancer Rep. 13:101–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Orte E, Sáenz-Narciso B, Moreno S and Cabello J: Multiple functions of the noncanonical Wnt pathway. Trends Genet. 29:545–553. 2013. View Article : Google Scholar : PubMed/NCBI | |
De A: Wnt/Ca2+ signaling pathway: A brief overview. Acta Biochim Biophys Sin (Shanghai). 43:745–756. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chae WJ and Bothwell ALM: Canonical and Non-Canonical Wnt signaling in immune cells. Trends Immunol. 39:830–847. 2018. View Article : Google Scholar : PubMed/NCBI | |
van Es JH, Haegebarth A, Kujala P, Itzkovitz S, Koo BK, Boj SF, Korving J, van den Born M, van Oudenaarden A, Robine S and Clevers H: A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol Cell Biol. 32:1918–1927. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ and Clevers H: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI | |
Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, de Punder K, Angers S, Peters PJ, Maurice MM and Clevers H: Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 530:340–343. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Lin W, Li N, Wang Q, Zhu S, Zeng A and Song L: Therapeutic approaches to colorectal cancer via strategies based on modulation of gut microbiota. Front Microbiol. 13:9455332022. View Article : Google Scholar : PubMed/NCBI | |
Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, Tóth B, Kondo A, Massasa EE, Itzkovitz S and Kaestner KH: Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature. 557:242–246. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kahn M: Wnt signaling in stem cells and cancer stem cells: A tale of two coactivators. Prog Mol Biol Transl Sci. 153:209–244. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aceto GM, Catalano T and Curia MC: Molecular aspects of colorectal adenomas: The interplay among microenvironment, oxidative stress, and predisposition. Biomed Res Int. 2020:17263092020. View Article : Google Scholar : PubMed/NCBI | |
Bright-Thomas RM and Hargest R: APC, beta-Catenin and hTCF-4; an unholy trinity in the genesis of colorectal cancer. Eur J Surg Oncol. 29:107–117. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang L and Shay JW: Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst. 109:djw3322017. View Article : Google Scholar : PubMed/NCBI | |
Xu N, Shen C, Luo Y, Xia L, Xue F, Xia Q and Zhang J: Upregulated miR-130a increases drug resistance by regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell. Biochem Biophys Res Commun. 425:468–472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shen DY, Zhang W, Zeng X and Liu CQ: Inhibition of Wnt/β-catenin signaling downregulates P-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma. Cancer Sci. 104:1303–1308. 2013. View Article : Google Scholar : PubMed/NCBI | |
Krausova M and Korinek V: Wnt signaling in adult intestinal stem cells and cancer. Cell Signal. 26:570–579. 2014. View Article : Google Scholar | |
Roy S and Majumdar AP: Signaling in colon cancer stem cells. J Mol Signal. 7:112012. View Article : Google Scholar : PubMed/NCBI | |
Sebio A, Kahn M and Lenz HJ: The potential of targeting Wnt/β-catenin in colon cancer. Expert Opin Ther Targets. 18:611–615. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tai D, Wells K, Arcaroli J, Vanderbilt C, Aisner DL, Messersmith WA and Lieu CH: Targeting the WNT signaling pathway in cancer therapeutics. Oncologist. 20:1189–1198. 2015. View Article : Google Scholar : PubMed/NCBI | |
Paluszczak J, Kleszcz R, Studzińska-Sroka E and Krajka-Kuźniak V: Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem. 441:109–124. 2018. View Article : Google Scholar : | |
Gekas C, D'Altri T, Aligué R, González J, Espinosa L and Bigas A: β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia. 30:2002–2010. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li L, Peng W, Zhou Q, Wan JP, Wang XT and Qi HB: LRP6 regulates Rab7-mediated autophagy through the Wnt/β-catenin pathway to modulate trophoblast cell migration and invasion. J Cell Biochem. 121:1599–1609. 2020. View Article : Google Scholar | |
Matsuzaki S and Darcha C: Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS One. 8:e768082013. View Article : Google Scholar | |
Kim JY, Park G, Krishnan M, Ha E and Chun KS: Selective Wnt/β-catenin Small-molecule Inhibitor CWP232228 impairs tumor growth of colon cancer. Anticancer Res. 39:3661–3667. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, et al: Wnt/β-Catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res. 75:1691–1702. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Lee HY, Park KK, Choi YK, Nam JS and Hong IS: CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: A novel therapeutic approach for liver cancer treatment. Oncotarget. 7:20395–20409. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kazi A, Xiang S, Yang H, Delitto D, Trevino J, Jiang RHY, Ayaz M, Lawrence HR, Kennedy P and Sebti SM: GSK3 suppression upregulates β-catenin and c-Myc to abrogate KRas-dependent tumors. Nat Commun. 9:51542018. View Article : Google Scholar | |
Wong CC, Xu J, Bian X, Wu JL, Kang W, Qian Y, Li W, Chen H, Gou H, Liu D, et al: In colorectal cancer cells with mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA demethylation to increase WNT signaling, stemness, and drug resistance. Gastroenterology. 159:2163–2180.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du F, Cao T, Xie H, Li T, Sun L, Liu H, Guo H, Wang X, Liu Q, Kim T, et al: KRAS Mutation-Responsive miR-139-5p inhibits colorectal cancer progression and is repressed by Wnt signaling. Theranostics. 10:7335–7350. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mologni L, Brussolo S, Ceccon M and Gambacorti-Passerini C: Synergistic effects of combined Wnt/KRAS inhibition in colorectal cancer cells. PLoS One. 7:e514492012. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Venkatesan AM, Dehnhardt CM, Dos Santos O, Delos Santos E, Ayral-Kaloustian S, Chen L, Geng Y, Arndt KT, Lucas J, et al: 2,4-Diamino-quinazolines as inhibitors of beta-catenin/Tcf-4 pathway: Potential treatment for colorectal cancer. Bioorg Med Chem Lett. 19:4980–4983. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dehnhardt CM, Venkatesan AM, Chen Z, Ayral-Kaloustian S, Dos Santos O, Delos Santos E, Curran K, Follettie MT, Diesl V, Lucas J, et al: Design and synthesis of novel diaminoquinazolines with in vivo efficacy for beta-catenin/T-cell transcriptional factor 4 pathway inhibition. J Med Chem. 53:897–910. 2010. View Article : Google Scholar | |
Chang TS, Lu CK, Hsieh YY, Wei KL, Chen WM, Tung SY, Wu CS, Chan MWY and Chiang MK: 2,4-Diamino-Quinazoline, a Wnt signaling inhibitor, suppresses gastric cancer progression and metastasis. Int J Mol Sci. 21:59012020. View Article : Google Scholar : PubMed/NCBI | |
Fan HC, Hsieh YC, Li LH and Chang CC, Janoušková K, Ramani MV, Subbaraju GV, Cheng KT and Chang CC: Dehydroxyhispolon methyl ether, a hispolon derivative, inhibits WNT/β-Catenin signaling to elicit human colorectal carcinoma cell apoptosis. Int J Mol Sci. 21:88392020. View Article : Google Scholar | |
Wu L, Zhou Z, Han S, Chen J, Liu Z, Zhang X, Yuan W, Ji J and Shu X: PLAGL2 promotes epithelial-mesenchymal transition and mediates colorectal cancer metastasis via β-catenin-dependent regulation of ZEB1. Br J Cancer. 122:578–589. 2020. View Article : Google Scholar | |
Low JL, Du W, Gocha T, Oguz G, Zhang X, Chen MW, Masirevic S, Yim DGR, Tan IBH, Ramasamy A, et al: Molecular docking-aided identification of small molecule inhibitors targeting β-catenin-TCF4 interaction. iScience. 24:1025442021. View Article : Google Scholar | |
Hu J, Wang Z, Chen J, Yu Z, Zhang J, Li W, Lin M, Yang X and Liu H: Overexpression of ICAT inhibits the progression of colorectal cancer by binding with β-Catenin in the cytoplasm. Technol Cancer Res Treat. 20:153303382110412532021. View Article : Google Scholar | |
Masuda M, Uno Y, Ohbayashi N, Ohata H, Mimata A, Kukimoto-Niino M, Moriyama H and Kashimoto S: TNIK inhibition abrogates colorectal cancer stemness. Nat Commun. 7:125862016. View Article : Google Scholar : PubMed/NCBI | |
Yamada T and Masuda M: Emergence of TNIK inhibitors in cancer therapeutics. Cancer Sci. 108:818–823. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sugano T, Masuda M, Takeshita F, Motoi N, Hirozane T, Goto N, Kashimoto S, Uno Y, Moriyama H, Sawa M, et al: Pharmacological blockage of transforming growth factor-β signalling by a Traf2- and Nck-interacting kinase inhibitor, NCB-0846. Br J Cancer. 124:228–236. 2021. View Article : Google Scholar | |
Sekita T, Yamada T, Kobayashi E, Yoshida A, Hirozane T, Kawai A, Uno Y, Moriyama H, Sawa M, Nagakawa Y, et al: Feasibility of targeting Traf2-and-Nck-Interacting kinase in synovial sarcoma. Cancers (Basel). 12:12582020. View Article : Google Scholar : PubMed/NCBI | |
Jung HR, Oh Y, Na D, Min S, Kang J, Jang D, Shin S, Kim J, Lee SE, Jeong EM, et al: CRISPR screens identify a novel combination treatment targeting BCL-XL and WNT signaling for KRAS/BRAF-mutated colorectal cancers. Oncogene. 40:3287–3302. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Sun L, Lu Y, Li F and Xu H: A small-molecule LF3 abrogates β-catenin/TCF4-mediated suppression of NaV 1.5 expression in HL-1 cardiomyocytes. J Mol Cell Cardiol. 135:90–96. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, von Kries JP and Birchmeier W: A small-molecule antagonist of the β-Catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res. 76:891–901. 2016. View Article : Google Scholar | |
Gurpinar E, Grizzle WE and Piazza GA: NSAIDs inhibit tumorigenesis, but how? Clin Cancer Res. 20:1104–1113. 2014. View Article : Google Scholar : | |
Sareddy GR, Kesanakurti D, Kirti PB and Babu PP: Nonsteroidal anti-inflammatory drugs diclofenac and celecoxib attenuates Wnt/β-catenin/Tcf signaling pathway in human glioblastoma cells. Neurochem Res. 38:2313–2322. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li N, Xi Y, Tinsley HN, Gurpinar E, Gary BD, Zhu B, Li Y, Chen X, Keeton AB, Abadi AH, et al: Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling. Mol Cancer Ther. 12:1848–1859. 2013. View Article : Google Scholar : PubMed/NCBI | |
Egashira I, Takahashi-Yanaga F, Nishida R, Arioka M, Igawa K, Tomooka K, Nakatsu Y, Tsuzuki T, Nakabeppu Y, Kitazono T and Sasaguri T: Celecoxib and 2,5-dimethylcelecoxib inhibit intestinal cancer growth by suppressing the Wnt/β-catenin signaling pathway. Cancer Sci. 108:108–115. 2017. View Article : Google Scholar | |
Bowen CM, Walter L, Borras E, Wu W, Ozcan Z, Chang K, Bommi PV, Taggart MW, Thirumurthi S, Lynch PM, et al: Combination of sulindac and bexarotene for prevention of intestinal carcinogenesis in familial adenomatous polyposis. Cancer Prev Res (Phila). 14:851–862. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Guan J, Li C, Gunter S, Nusrat L, Ng S, Dhand K, Morshead C, Kim A and Das S: Aberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma. Oncotarget. 8:82217–82230. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bindu S, Mazumder S and Bandyopadhyay U: Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol. 180:1141472020. View Article : Google Scholar : PubMed/NCBI | |
Grosser T, Ricciotti E and FitzGerald GA: The cardiovascular pharmacology of nonsteroidal anti-inflammatory drugs. Trends Pharmacol Sci. 38:733–748. 2017. View Article : Google Scholar : PubMed/NCBI | |
Walker C and Biasucci LM: Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited. Postgrad Med. 130:55–71. 2018. View Article : Google Scholar | |
Yan KS, Janda CY, Chang J, Zheng GXY, Larkin KA, Luca VC, Chia LA, Mah AT, Han A, Terry JM, et al: Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature. 545:238–242. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, et al: Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA. 109:11717–11722. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Morris JP IV, Yan W, Schofield HK, Gurney A, Simeone DM, Millar SE, Hoey T, Hebrok M and Pasca di Magliano M: Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Res. 73:4909–4922. 2013. View Article : Google Scholar : PubMed/NCBI | |
Flanagan DJ, Barker N, Costanzo NSD, Mason EA, Gurney A, Meniel VS, Koushyar S, Austin CR, Ernst M, Pearson HB, et al: Frizzled-7 is required for Wnt signaling in gastric tumors with and without apc mutations. Cancer Res. 79:970–981. 2019. View Article : Google Scholar : PubMed/NCBI | |
Diamond JR, Becerra C, Richards D, Mita A, Osborne C, O'Shaughnessy J, Zhang C, Henner R, Kapoun AM, Xu L, et al: Phase Ib clinical trial of the anti-frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res Treat. 184:53–62. 2020. View Article : Google Scholar : PubMed/NCBI | |
Le PN, McDermott JD and Jimeno A: Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015. View Article : Google Scholar | |
Jimeno A, Gordon M, Chugh R, Messersmith W, Mendelson D, Dupont J, Stagg R, Kapoun AM, Xu L, Uttamsingh S, et al: A First-in-human phase I study of the anticancer stem cell agent ipafricept (OMP-54F28), a decoy receptor for Wnt ligands, in patients with advanced solid tumors. Clin Cancer Res. 23:7490–7497. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dotan E, Cardin DB, Lenz HJ, Messersmith W, O'Neil B, Cohen SJ, Denlinger CS, Shahda S, Astsaturov I, Kapoun AM, et al: Phase Ib study of wnt inhibitor ipafricept with gemcitabine and nab-paclitaxel in patients with previously untreated stage IV pancreatic cancer. Clin Cancer Res. 26:5348–5357. 2020. View Article : Google Scholar : PubMed/NCBI | |
Moore KN, Gunderson CC, Sabbatini P, McMeekin DS, Mantia-Smaldone G, Burger RA, Morgan MA, Kapoun AM, Brachmann RK, Stagg R, et al: A phase 1b dose escalation study of ipafricept (OMP54F28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer. Gynecol Oncol. 154:294–301. 2019. View Article : Google Scholar : PubMed/NCBI | |
Le PN, Keysar SB, Miller B, Eagles JR, Chimed TS, Reisinger J, Gomez KE, Nieto C, Jackson BC, Somerset HL, et al: Wnt signaling dynamics in head and neck squamous cell cancer tumor-stroma interactions. Mol Carcinog. 58:398–410. 2019. View Article : Google Scholar : | |
Madan B, McDonald MJ, Foxa GE, Diegel CR, Williams BO and Virshup DM: Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Res. 6:172018. View Article : Google Scholar : PubMed/NCBI | |
Resh MD: Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE. 2006:re142006. View Article : Google Scholar : PubMed/NCBI | |
Torres VI, Godoy JA and Inestrosa NC: Modulating Wnt signaling at the root: Porcupine and Wnt acylation. Pharmacol Ther. 198:34–45. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nile AH and Hannoush RN: Fatty acylation of Wnt proteins. Nat Chem Biol. 12:60–69. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bagheri M, Tabatabae Far MA, Mirzaei H and Ghasemi F: Evaluation of antitumor effects of aspirin and LGK974 drugs on cellular signaling pathways, cell cycle and apoptosis in colorectal cancer cell lines compared to oxaliplatin drug. Fundam Clin Pharmacol. 34:51–64. 2020. View Article : Google Scholar | |
Hayashi M, Baker A, Goldstein SD, Albert CM, Jackson KW, McCarty G, Kahlert UD and Loeb DM: Inhibition of porcupine prolongs metastasis free survival in a mouse xenograft model of Ewing sarcoma. Oncotarget. 8:78265–78276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rudy SF, Brenner JC, Harris JL, Liu J, Che J, Scott MV, Owen JH, Komarck CM, Graham MP, Bellile EL, et al: In vivo Wnt pathway inhibition of human squamous cell carcinoma growth and metastasis in the chick chorioallantoic model. J Otolaryngol Head Neck Surg. 45:262016. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, et al: Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA. 110:20224–20229. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wu G, Xu Y, Li J, Ruan N, Chen Y, Zhang Q and Xia Q: Porcupine Inhibitor LGK974 Downregulates the Wnt signaling pathway and inhibits clear cell renal cell carcinoma. Biomed Res Int. 2020:25276432020.PubMed/NCBI | |
Cho YH, Ro EJ, Yoon JS, Mizutani T, Kang DW, Park JC, Il Kim T, Clevers H and Choi KY: 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat Commun. 11:53212020. View Article : Google Scholar | |
Guimaraes PPG, Tan M, Tammela T, Wu K, Chung A, Oberli M, Wang K, Spektor R, Riley RS, Viana CTR, et al: Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. J Control Release. 290:75–87. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jin XF, Spoettl G, Maurer J, Nölting S and Auernhammer CJ: Inhibition of Wnt/β-Catenin signaling in neuroendocrine tumors in vitro: Antitumoral effects. Cancers (Basel). 12:3452020. View Article : Google Scholar | |
Suwala AK, Koch K, Rios DH, Aretz P, Uhlmann C, Ogorek I, Felsberg J, Reifenberger G, Köhrer K, Deenen R, et al: Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma in vitro. Oncotarget. 9:22703–22716. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boone JD, Arend RC, Johnston BE, Cooper SJ, Gilchrist SA, Oelschlager DK, Grizzle WE, McGwin G Jr, Gangrade A, Straughn JM Jr and Buchsbaum DJ: Targeting the Wnt/β-catenin pathway in primary ovarian cancer with the porcupine inhibitor WNT974. Lab Invest. 96:249–259. 2016. View Article : Google Scholar | |
Bland T, Wang J, Yin L, Pu T, Li J, Gao J, Lin TP, Gao AC and Wu BJ: WLS-Wnt signaling promotes neuroendocrine prostate cancer. iScience. 24:1019702021. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Hao HX, Growney JD, Woolfenden S, Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, et al: Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA. 110:12649–12654. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li J, Wang R, Zhang L, Fu G, Wang X, Wang Y, Fang C, Zhang D, Du D, et al: Frequent RNF43 mutation contributes to moderate activation of Wnt signaling in colorectal signet-ring cell carcinoma. Protein Cell. 11:292–298. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rodon J, Argilés G, Connolly RM, Vaishampayan U, de Jonge M, Garralda E, Giannakis M, Smith DC, Dobson JR, McLaughlin ME, et al: Phase 1 study of single-agent WNT974, a first-in-class Porcupine inhibitor, in patients with advanced solid tumours. Br J Cancer. 125:28–37. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mo ML, Li MR, Chen Z, Liu XW, Sheng Q and Zhou HM: Inhibition of the Wnt palmitoyltransferase porcupine suppresses cell growth and downregulates the Wnt/β-catenin pathway in gastric cancer. Oncol Lett. 5:1719–1723. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Lüscher TF, Distler O, et al: Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 38:1413–1425. 2017. | |
Najdi R, Proffitt K, Sprowl S, Kaur S, Yu J, Covey TM, Virshup DM and Waterman ML: A uniform human Wnt expression library reveals a shared secretory pathway and unique signaling activities. Differentiation. 84:203–213. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, Robson AJ, Ridgway RA, Samuel K, Van Rooijen N, Barry ST, et al: WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest. 125:1269–1285. 2015. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med. 42:713–725. 2018.PubMed/NCBI | |
Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F, Ran Y and Wan J: LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res. 37:2252018. View Article : Google Scholar | |
Jang J, Song J, Sim I, Kwon YV and Yoon Y: Wnt-Signaling Inhibitor Wnt-C59 suppresses the cytokine upregulation in multiple organs of lipopolysaccharide-induced endotoxemic mice via reducing the interaction between β-Catenin and NF-κB. Int J Mol Sci. 22:62492021. View Article : Google Scholar | |
Jang J, Song J, Sim I and Yoon Y: Wnt-C59 inhibits proinflammatory cytokine expression by reducing the interaction between β-catenin and NF-κB in LPS-stimulated epithelial and macrophage cells. Korean J Physiol Pharmacol. 25:307–319. 2021. View Article : Google Scholar : PubMed/NCBI | |
Madan B, Ke Z, Harmston N, Ho SY, Frois AO, Alam J, Jeyaraj DA, Pendharkar V, Ghosh K, Virshup IH, et al: Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene. 35:2197–2207. 2016. View Article : Google Scholar | |
Zhong Z, Sepramaniam S, Chew XH, Wood K, Lee MA, Madan B and Virshup DM: PORCN inhibition synergizes with PI3K/mTOR inhibition in Wnt-addicted cancers. Oncogene. 38:6662–6677. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kaur A, Lim JYS, Sepramaniam S, Patnaik S, Harmston N, Lee MA, Petretto E, Virshup DM and Madan B: WNT inhibition creates a BRCA-like state in Wnt-addicted cancer. EMBO Mol Med. 13:e133492021. View Article : Google Scholar : PubMed/NCBI | |
Shirai F, Mizutani A, Yashiroda Y, Tsumura T, Kano Y, Muramatsu Y, Chikada T, Yuki H, Niwa H, Sato S, et al: Design and discovery of an orally efficacious spiroindolinone-based tankyrase inhibitor for the treatment of colon cancer. J Med Chem. 63:4183–4204. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kulak O, Chen H, Holohan B, Wu X, He H, Borek D, Otwinowski Z, Yamaguchi K, Garofalo LA, Ma Z, et al: Disruption of Wnt/β-Catenin signaling and telomeric shortening are inextricable consequences of tankyrase inhibition in human cells. Mol Cell Biol. 35:2425–2435. 2015. View Article : Google Scholar : PubMed/NCBI | |
Arqués O, Chicote I, Puig I, Tenbaum SP, Argilés G, Dienstmann R, Fernández N, Caratù G, Matito J, Silberschmidt D, et al: Tankyrase Inhibition Blocks Wnt/β-Catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin Cancer Res. 22:644–656. 2016. View Article : Google Scholar | |
Wu X, Luo F, Li J, Zhong X and Liu K: Tankyrase1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol. 48:1333–1340. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Liu D, Sun X, Yang K, Yao J, Cheng C, Wang C and Zheng J: CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling via transactivation of GSK-3β and Axin2 expression. Cell Death Dis. 10:262019. View Article : Google Scholar | |
Sun K, He SB, Yao YZ, Qu JG, Xie R, Ma YQ, Zong MH and Chen JX: Tre2 (USP6NL) promotes colorectal cancer cell proliferation via Wnt/β-catenin pathway. Cancer Cell Int. 19:1022019. View Article : Google Scholar | |
Alula KM, Delgado-Deida Y, Jackson DN, Venuprasad K and Theiss AL: Nuclear partitioning of Prohibitin 1 inhibits Wnt/β-catenin-dependent intestinal tumorigenesis. Oncogene. 40:369–383. 2021. View Article : Google Scholar | |
Wang T, Ning K, Lu TX and Hua D: Elevated expression of TrpC5 and GLUT1 is associated with chemoresistance in colorectal cancer. Oncol Rep. 37:1059–1065. 2017. View Article : Google Scholar | |
Xu J, Lv G, Xu B and Jiang B: Overexpression of UBE2M through Wnt/β-Catenin signaling is associated with poor prognosis and chemotherapy resistance in colorectal cancer. Transl Cancer Res. 9:5614–5625. 2020. View Article : Google Scholar : PubMed/NCBI | |
Siraj AK, Kumar Parvathareddy S, Pratheeshkumar P, Padmaja Divya S, Ahmed SO, Melosantos R, Begum R, Concepcion RMJA, Al-Sanea N, Ashari LH, et al: APC truncating mutations in Middle Eastern Population: Tankyrase inhibitor is an effective strategy to sensitize APC mutant CRC To 5-FU chemotherapy. Biomed Pharmacother. 121:1095722020. View Article : Google Scholar | |
Martins-Neves SR, Paiva-Oliveira DI, Fontes-Ribeiro C, Bovée JVMG, Cleton-Jansen AM and Gomes CMF: IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft. Cancer Lett. 414:1–15. 2018. View Article : Google Scholar | |
Cheng C, Huang Z, Zhou R, An H, Cao G, Ye J, Huang C and Wu D: Numb negatively regulates the epithelial-to-mesenchymal transition in colorectal cancer through the Wnt signaling pathway. Am J Physiol Gastrointest Liver Physiol. 318:G841–G853. 2020. View Article : Google Scholar : PubMed/NCBI | |
Okunlola FO, Akawa OB, Subair TI, Omolabi KF and Soliman MES: Unravelling the mechanistic role of quinazolinone pharmacophore in the inhibitory activity of bis-quinazolinone derivative on tankyrase-1 in the treatment of colorectal cancer (CRC) and non-small cell lung cancer (NSCLC): A computational approach. Cell Biochem Biophys. 80:1–10. 2022. View Article : Google Scholar | |
Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, Sambrone A, Schutten M, Firestein R, et al: A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 73:3132–3144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI | |
Norum JH, Skarpen E, Brech A, Kuiper R, Waaler J, Krauss S and Sørlie T: The tankyrase inhibitor G007-LK inhibits small intestine LGR5+ stem cell proliferation without altering tissue morphology. Biol Res. 51:32018. View Article : Google Scholar | |
Kierulf-Vieira KS, Sandberg CJ, Waaler J, Lund K, Skaga E, Saberniak BM, Panagopoulos I, Brandal P, Krauss S, Langmoen IA and Vik-Mo EO: A small-molecule tankyrase inhibitor reduces glioma stem cell proliferation and sphere formation. Cancers (Basel). 12:16302020. View Article : Google Scholar : PubMed/NCBI | |
Waaler J, Mygland L, Tveita A, Strand MF, Solberg NT, Olsen PA, Aizenshtadt A, Fauskanger M, Lund K, Brinch SA, et al: Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol. 3:1962020. View Article : Google Scholar : PubMed/NCBI | |
Solberg NT, Waaler J, Lund K, Mygland L, Olsen PA and Krauss S: TANKYRASE inhibition enhances the antiproliferative effect of PI3K and EGFR inhibition, mutually affecting β-CATENIN and AKT signaling in colorectal cancer. Mol Cancer Res. 16:543–553. 2018. View Article : Google Scholar | |
Tang L, Zhu H, Yang X, Xie F, Peng J, Jiang D, Xie J, Qi M and Yu L: Shizukaol D, a dimeric sesquiterpene isolated from chloranthus serratus, represses the growth of human liver cancer cells by modulating wnt signalling pathway. PLoS One. 11:e01520122016. View Article : Google Scholar : PubMed/NCBI | |
Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E and Di Leo A: Curcumin and colorectal cancer: From basic to clinical evidences. Int J Mol Sci. 21:23642020. View Article : Google Scholar : PubMed/NCBI | |
Weng W and Goel A: Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin Cancer Biol. 80:73–86. 2022. View Article : Google Scholar | |
Villegas C, Perez R, Sterner O, González-Chavarría I and Paz C: Curcuma as an adjuvant in colorectal cancer treatment. Life Sci. 286:1200432021. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Li S, Qiu X, Cong J, Zhou J and Miu W: Curcumin inhibits cell viability and increases apoptosis of SW620 human colon adenocarcinoma cells via the caudal type homeobox-2 (CDX2)/Wnt/β-catenin pathway. Med Sci Monit. 25:7451–7458. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bian Y, Wang G, Zhou J, Yin G, Liu T, Liang L, Liang L, Yang X, Zhang W, Ni K, et al: Astragalus membranaceus (Huangqi) and Rhizoma curcumae (Ezhu) decoction suppresses colorectal cancer via downregulation of Wnt5/β-Catenin signal. Chin Med. 17:112022. View Article : Google Scholar | |
Wu X, Yu N, Zhang Y, Ye Y, Sun W, Ye L, Wu H, Yang Z, Wu L and Wang F: Radix Tetrastigma hemsleyani flavone exhibits antitumor activity in colorectal cancer via Wnt/β-catenin signaling pathway. Onco Targets Ther. 11:6437–6446. 2018. View Article : Google Scholar : | |
Pintova S, Dharmupari S, Moshier E, Zubizarreta N, Ang C and Holcombe RF: Genistein combined with FOLFOX or FOLFOX-Bevacizumab for the treatment of metastatic colorectal cancer: Phase I/II pilot study. Cancer Chemother Pharmacol. 84:591–598. 2019. View Article : Google Scholar : PubMed/NCBI | |
Křížová L, Dadáková K, Kašparovská J and Kašparovský T: Isoflavones. Molecules. 24:10762019. View Article : Google Scholar : | |
Dou R, Ng K, Giovannucci EL, Manson JE, Qian ZR and Ogino S: Vitamin D and colorectal cancer: Molecular, epidemiological and clinical evidence. Br J Nutr. 115:1643–1660. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wesselink E, Kok DE, Bours MJL, de Wilt JHW, van Baar H, van Zutphen M, Geijsen AMJR, Keulen ETP, Hansson BME, van den Ouweland J, et al: Vitamin D, magnesium, calcium, and their interaction in relation to colorectal cancer recurrence and all-cause mortality. Am J Clin Nutr. 111:1007–1017. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Lipsyc-Sharf M, Zong X, Wang X, Hur J, Song M, Wang M, Smith-Warner SA, Fuchs C, Ogino S, et al: Total Vitamin D intake and risks of early-onset colorectal cancer and precursors. Gastroenterology 2021. 161:1208–1217.e9. 2021. | |
Fernández-Barral A, Costales-Carrera A, Buira SP, Jung P, Ferrer-Mayorga G, Larriba MJ, Bustamante-Madrid P, Domínguez O, Real FX, Guerra-Pastriá L, et al: Vitamin D differentially regulates colon stem cells in patient-derived normal and tumor organoids. FEBS J. 287:53–72. 2020. View Article : Google Scholar | |
Razak S, Afsar T, Almajwal A, Alam I and Jahan S: Growth inhibition and apoptosis in colorectal cancer cells induced by Vitamin D-Nanoemulsion (NVD): Involvement of Wnt/β-catenin and other signal transduction pathways. Cell Biosci. 9:152019. View Article : Google Scholar | |
Ren H, Zhao J, Fan D, Wang Z, Zhao T, Li Y, Zhao Y, Adelson D and Hao H: Alkaloids from nux vomica suppresses colon cancer cell growth through Wnt/β-catenin signaling pathway. Phytother Res. 33:1570–1578. 2019. View Article : Google Scholar : PubMed/NCBI | |
Seshadri VD: Brucine promotes apoptosis in cervical cancer cells (ME-180) via suppression of inflammation and cell proliferation by regulating PI3K/AKT/mTOR signaling pathway. Environ Toxicol. 36:1841–1847. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ruan H, Zhan YY, Hou J, Xu B, Chen B, Tian Y, Wu D, Zhao Y, Zhang Y, Chen X, et al: Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene. 36:6906–6918. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu X, Zhang N, Yin M, Dong J, Zeng Q, Mao G, Song D, Liu L and Deng H: Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharm Sin B. 10:2299–2312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ham SW, Kim JK, Jeon HY, Kim EJ, Jin X, Eun K, Park CG, Lee SY, Seo S, Kim JY, et al: Korean Red ginseng extract inhibits glioblastoma propagation by blocking the Wnt signaling pathway. J Ethnopharmacol. 236:393–400. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Park M, Haleem I, Lee Y, Koo J, Na YC, Song G and Lee J: Natural product ginsenoside 20(S)-25-Methoxyl-Dammarane-3β, 12β, 20-Triol in cancer treatment: A review of the pharmacological mechanisms and pharmacokinetics. Front Pharmacol. 11:5212020. View Article : Google Scholar | |
Yuan Y, Wang J, Xu M, Zhang Y, Wang Z, Liang L and Sun P: 20(S)-ginsenoside Rh2 as agent for the treatment of LMN-CRC via regulating epithelial-mesenchymal transition. Biosci Rep. 40:BSR201915072020. View Article : Google Scholar : PubMed/NCBI | |
Hashemi F, Zarrabi A, Zabolian A, Saleki H, Farahani MV, Sharifzadeh SO, Ghahremaniyeh Z, Bejandi AK, Hushmandi K, Ashrafizadeh M and Khan H: Novel strategy in breast cancer therapy: Revealing the bright side of ginsenosides. Curr Mol Pharmacol. 14:1093–1111. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sui H, Zhao J, Zhou L, Wen H, Deng W, Li C, Ji Q, Liu X, Feng Y, Chai N, et al: Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer. Cancer Lett. 403:86–97. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li H, Jeong JH, Kwon SW, Lee SK, Lee HJ and Ryu JH: Z-Aj oene Inhibits Growth of Colon Cancer by Promotion of CK1α Dependent β-Catenin Phosphorylation. Molecules. 25:7032020. View Article : Google Scholar | |
Zhu ML, Zheng Z, Lou EZ, Zhao KT, He SY and Chen JY: Anti-gastric cancer effects of Z Ajoene and its molecular mechanisms. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 37:514–519. 2021.In Chinese. PubMed/NCBI | |
Li N, Zeng A, Wang Q, Chen M, Zhu S and Song L: Regulatory function of DNA methylation mediated lncRNAs in gastric cancer. Cancer Cell Int. 22:2272022. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Liu Y, Zheng H, Zheng L, Liu W, Wu J, Ou R, Zhang G, Li F, Hu M, et al: Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget. 7:31413–31428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang CZ, Wan C, Luo Y, Zhang CF, Zhang QH, Chen L, Liu Z, Wang DH, Lager M, Li CH, et al: Effects of dihydroartemisinin, a metabolite of artemisinin, on colon cancer chemoprevention and adaptive immune regulation. Mol Biol Rep. 49:2695–2709. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gong RH, Yang DJ, Kwan HY, Lyu AP, Chen GQ and Bian ZX: Cell death mechanisms induced by synergistic effects of halofuginone and artemisinin in colorectal cancer cells. Int J Med Sci. 19:175–185. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wen SY, Chen YY, Deng CM, Zhang CQ and Jiang MM: Nerigoside suppresses colorectal cancer cell growth and metastatic potential through inhibition of ERK/GSK3β/β-catenin signaling pathway. Phytomedicine. 57:352–363. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Zhang X, Zhang W and Rengarajan T: Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in HT-29 human colon cancer cell line. Drug Des Devel Ther. 12:1303–1310. 2018. View Article : Google Scholar : | |
Yang MH, Ha IJ, Lee SG, Lee J, Um JY and Ahn KS: Ginkgolide C promotes apoptosis and abrogates metastasis of colorectal carcinoma cells by targeting Wnt/β-catenin signaling pathway. IUBMB Life. 73:1222–1234. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pashirzad M, Johnston TP and Sahebkar A: Therapeutic effects of polyphenols on the treatment of colorectal cancer by regulating Wnt β-Catenin signaling pathway. J Oncol. 2021:36195102021. View Article : Google Scholar | |
Howells LM, Berry DP, Elliott PJ, Jacobson EW, Hoffmann E, Hegarty B, Brown K, Steward WP and Gescher AJ: Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases-safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila). 4:1419–1425. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reabroi S, Chairoungdua A, Saeeng R, Kasemsuk T, Saengsawang W, Zhu W and Piyachaturawat P: A silyl andrographolide analogue suppresses Wnt/β-catenin signaling pathway in colon cancer. Biomed Pharmacother. 101:414–421. 2018. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Kikuchi H, Nguyen VH, Oshima Y, Ishigaki H, Nakajima-Shimada J and Kubohara Y: Biological activities of novel derivatives of differentiation-inducing factor 3 from dictyostelium discoideum. Biol Pharm Bull. 40:1941–1947. 2017. View Article : Google Scholar : PubMed/NCBI | |
Totsuka K, Makioka Y, Iizumi K, Takahashi K, Oshima Y, Kikuchi H and Kubohara Y: Halogen-Substituted derivatives of dictyostelium differentiation-inducing factor-1 suppress serum-induced cell migration of human breast cancer MDA-MB-231 cells in vitro. Biomolecules. 9:2562019. View Article : Google Scholar : PubMed/NCBI | |
Efe Ertürk N and Taşcı S: The effects of peppermint oil on nausea, vomiting and retching in cancer patients undergoing chemotherapy: An open label quasi-randomized controlled pilot study. Complement Ther Med. 56:1025872021. View Article : Google Scholar | |
Li X, Bai B, Liu L, Ma P, Kong L, Yan J, Zhang J, Ye Z, Zhou H, Mao B, et al: Novel β-carbolines against colorectal cancer cell growth via inhibition of Wnt/β-catenin signaling. Cell Death Discov. 1:150332015. View Article : Google Scholar | |
Cha PH, Hwang JH, Kwak DK, Koh E, Kim KS and Choi KY: APC loss induces Warburg effect via increased PKM2 transcription in colorectal cancer. Br J Cancer. 124:634–644. 2021. View Article : Google Scholar : | |
Ruan Z, Liang M, Lai M, Shang L, Deng X and Su X: KYA1797K down-regulates PD-L1 in colon cancer stem cells to block immune evasion by suppressing the β-catenin/STT3 signaling pathway. Int Immunopharmacol. 78:1060032020. View Article : Google Scholar | |
Cho YH, Ro EJ, Yoon JS, Kwak DK, Cho J, Kang DW, Lee HY and Choi KY: Small molecule-induced simultaneous destabilization of β-catenin and RAS is an effective molecular strategy to suppress stemness of colorectal cancer cells. Cell Commun Signal. 18:382020. View Article : Google Scholar | |
Savvidou I, Khong T, Cuddihy A, McLean C, Horrigan S and Spencer A: β-Catenin Inhibitor BC2059 Is efficacious as monotherapy or in combination with proteasome inhibitor bortezomib in multiple myeloma. Mol Cancer Ther. 16:1765–1778. 2017. View Article : Google Scholar : PubMed/NCBI | |
Savvidou I, Khong T, Whish S, Carmichael I, Sepehrizadeh T, Mithraprabhu S, Horrigan SK, de Veer M and Spencer A: Combination of histone deacetylase inhibitor panobinostat (LBH589) with β-Catenin Inhibitor Tegavivint (BC2059) exerts significant anti-myeloma activity both in vitro and in vivo. Cancers (Basel). 14:8402022. View Article : Google Scholar | |
Choi JH, Jang TY, Jeon SE, Kim JH, Lee CJ, Yun HJ, Jung JY, Park SY and Nam JS: The small-molecule Wnt Inhibitor ICG-001 efficiently inhibits colorectal cancer stemness and metastasis by suppressing MEIS1 Expression. Int J Mol Sci. 22:134132021. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Li Q, Shang R, Yao L, Wu L, Zhang M, Zhang L, Xu M, Lu Z, Zhou J, et al: WNT4 secreted by tumor tissues promotes tumor progression in colorectal cancer by activation of the Wnt/β-catenin signalling pathway. J Exp Clin Cancer Res. 39:2512020. View Article : Google Scholar | |
Song Q, Han Z, Wu X, Wang Y, Zhou L, Yang L, Liu N, Sui H, Cai J, Ji Q and Li Q: β-Arrestin1 promotes colorectal cancer metastasis through GSK-3β/β-Catenin signaling-mediated epithelial-to-mesenchymal transition. Front Cell Dev Biol. 9:6500672021. View Article : Google Scholar | |
Li B, Orton D, Neitzel LR, Astudillo L, Shen C, Long J, Chen X, Kirkbride KC, Doundoulakis T, Guerra ML, et al: Differential abundance of CK1α provides selectivity for pharmacological CK1α activators to target WNT-dependent tumors. Sci Signal. 10:eaak99162017. View Article : Google Scholar | |
Zheng W, Hu J, Lv Y, Bai B, Shan L, Chen K, Dai S and Zhu H: Pyrvinium pamoate inhibits cell proliferation through ROS-mediated AKT-dependent signaling pathway in colorectal cancer. Med Oncol. 38:212021. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Li Y, Ai Y, Obianom ON, Guo D, Yang H, Sakamuru S, Xia M, Shu Y and Xue F: Pyrazole-4-Carboxamide (YW2065): A therapeutic candidate for colorectal cancer via dual activities of Wnt/β-Catenin signaling inhibition and AMP-Activated protein kinase (AMPK) activation. J Med Chem. 62:11151–11164. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song P, Feng L, Li J, Dai D, Zhu L, Wang C, Li J, Li L, Zhou Q, Shi R, et al: β-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer. Mol Cancer. 19:1292019. View Article : Google Scholar | |
Wang Z, Zhou L, Wang Y, Peng Q, Li H, Zhang X, Su Z, Song J, Sun Q, Sayed S, et al: The CK1δ/ε-AES axis regulates tumorigenesis and metastasis in colorectal cancer. Theranostics. 11:4421–4435. 2021. View Article : Google Scholar : | |
Li Y, Rogoff HA, Keates S, Gao Y, Murikipudi S, Mikule K, Leggett D, Li W, Pardee AB and Li CJ: Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci USA. 112:1839–1844. 2015. View Article : Google Scholar : PubMed/NCBI | |
MacDonagh L, Gray SG, Breen E, Cuffe S, Finn SP, O'Byrne KJ and Barr MP: BBI608 inhibits cancer stemness and reverses cisplatin resistance in NSCLC. Cancer Lett. 428:117–126. 2018. View Article : Google Scholar : PubMed/NCBI | |
Han D, Yu T, Dong N, Wang B, Sun F and Jiang D: Napabucasin, a novel STAT3 inhibitor suppresses proliferation, invasion and stemness of glioblastoma cells. J Exp Clin Cancer Res. 38:2892019. View Article : Google Scholar : PubMed/NCBI | |
Beyreis M, Gaisberger M, Jakab M, Neureiter D, Helm K, Ritter M, Kiesslich T and Mayr C: The cancer stem cell inhibitor napabucasin (BBI608) shows general cytotoxicity in biliary tract cancer cells and reduces cancer stem cell characteristics. Cancers (Basel). 11:2762019. View Article : Google Scholar : PubMed/NCBI | |
Jonker DJ, Nott L, Yoshino T, Gill S, Shapiro J, Ohtsu A, Zalcberg J, Vickers MM, Wei AC, Gao Y, et al: Napabucasin versus placebo in refractory advanced colorectal cancer: A randomised phase 3 trial. Lancet Gastroenterol Hepatol. 3:263–270. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tam BY, Chiu K, Chung H, Bossard C, Nguyen JD, Creger E, Eastman BW, Mak CC, Ibanez M, Ghias A, et al: The CLK inhibitor SM08502 induces anti-tumor activity and reduces Wnt pathway gene expression in gastrointestinal cancer models. Cancer Lett. 473:186–197. 2020. View Article : Google Scholar | |
Kajino-Sakamoto R, Fujishita T, Taketo MM and Aoki M: Synthetic lethality between MyD88 loss and mutations in Wnt/β-catenin pathway in intestinal tumor epithelial cells. Oncogene. 40:408–420. 2021. View Article : Google Scholar | |
Chen Y, Rao X, Huang K, Jiang X, Wang H and Teng L: FH535 inhibits proliferation and motility of colon cancer cells by targeting wnt/β-catenin signaling pathway. J Cancer. 8:3142–3153. 2017. View Article : Google Scholar : | |
Tu X, Hong D, Jiang Y, Lou Z, Wang K, Jiang Y and Jin L: FH535 inhibits proliferation and migration of colorectal cancer cells by regulating CyclinA2 and Claudin1 gene expression. Gene. 690:48–56. 2019. View Article : Google Scholar | |
Hua F, Shang S, Yang YW, Zhang HZ, Xu TL, Yu JJ, Zhou DD, Cui B, Li K, Lv XX, et al: TRIB3 Interacts With β-Catenin and TCF4 to increase stem cell features of colorectal cancer stem cells and tumorigenesis. Gastroenterology. 156:708–721.e15. 2019. View Article : Google Scholar | |
Shang S, Yang YW, Chen F, Yu L, Shen SH, Li K, Cui B, Lv XX, Zhang C, Yang C, et al: TRIB3 reduces CD8(+) T cell infiltration and induces immune evasion by repressing the STAT1-CXCL10 axis in colorectal cancer. Sci Transl Med. 14:eabf09922022. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Wei B, Li L, Chen X, Yang J, Li X, Jiang X, Lv M, Li M, Lin Y, et al: Therapeutic potential of apatinib against colorectal cancer by inhibiting VEGFR2-Mediated Angiogenesis and β-Catenin Signaling. Onco Targets Ther. 13:11031–11044. 2020. View Article : Google Scholar : | |
Or CR, Huang CW and Chang CC, Lai YC, Chen YJ and Chang CC: Obatoclax, a Pan-BCL-2 inhibitor, downregulates survivin to induce apoptosis in human colorectal carcinoma cells via suppressing WNT/β-catenin Signaling. Int J Mol Sci. 21:17732020. View Article : Google Scholar | |
Gan T, Stevens AT, Xiong X, Wen YA, Farmer TN, Li AT, Stevens PD, Golshani S, Weiss HL, Evers BM and Gao T: Inhibition of protein tyrosine phosphatase receptor type F suppresses Wnt signaling in colorectal cancer. Oncogene. 39:6789–6801. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song W, Ma J, Lei B, Yuan X, Cheng B, Yang H, Wang M, Feng Z and Wang L: Sine oculis homeobox 1 promotes proliferation and migration of human colorectal cancer cells through activation of Wnt/β-catenin signaling. Cancer Sci. 110:608–616. 2019. View Article : Google Scholar : | |
Lepore Signorile M, Grossi V, Di Franco S, Forte G, Disciglio V, Fasano C, Disciglio V, Fasano C, Sanese P, De Marco K, et al: Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death Dis. 12:3162021. View Article : Google Scholar | |
Sheng YH, Wong KY, Seim I, Wang R, He Y, Wu A, Patrick M, Lourie R, Schreiber V, Giri R, et al: MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity. Oncogene. 38:7294–7310. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Wang G, Tao J and Chen W: RNF6 promotes colorectal cancer invasion and migration via the Wnt/β-catenin pathway by inhibiting GSK3β activity. Pathol Res Pract. 225:1535452021. View Article : Google Scholar | |
Peng W, Zhang H, Tan S, Li Y, Zhou Y, Wang L, Liu C, Li Q, Cen X, Yang S and Zhao Y: Synergistic antitumor effect of 5-fluorouracil with the novel LSD1 inhibitor ZY0511 in colorectal cancer. Ther Adv Med Oncol. 12:17588359209374282020. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Gu L, Lin X, Zhang J, Tang Y, Zhou X, Lu B, Lin X, Liu C, Prochownik EV and Li Y: Ceramide-mediated gut dysbiosis enhances cholesterol esterification and promotes colorectal tumorigenesis in mice. JCI Insight. 7:e1506072022. View Article : Google Scholar : | |
Chen Z, Wu J, Liu B, Zhang G, Wang Z, Zhang L, Wang K, Fan Z and Zhu P: Identification of cis-HOX-HOXC10 axis as a therapeutic target for colorectal tumor-initiating cells without APC mutations. Cell Rep. 36:1094312021. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Dai J, Sun Z, Shi C, Cao H, Chen X, Gu S, Li Z, Qian W and Han X: Targeted inhibition of disheveled PDZ domain via NSC668036 depresses fibrotic process. Exp Cell Res. 331:115–122. 2015. View Article : Google Scholar | |
Pradhan TR and Mohapatra DK: A synthetic study toward the core structure of (-)-apicularen A. Org Biomol Chem. 16:8810–8818. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mauvezin C and Neufeld TP: Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy. 11:1437–1438. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Mook RA Jr, Ren XR, Zhang Q, Jing G, Lu M, Spasojevic I, Lyerly HK, Hsu D and Chen W: Identification of DK419, a potent inhibitor of Wnt/β-catenin signaling and colorectal cancer growth. Bioorg Med Chem. 26:5435–5442. 2018. View Article : Google Scholar : PubMed/NCBI | |
An T, Gong Y, Li X, Kong L, Ma P, Gong L, Zhu H, Yu C, Liu J, Zhou H, et al: USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth. Biochem Pharmacol. 131:29–39. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kumar B, Ahmad R, Sharma S, Gowrikumar S, Primeaux M, Rana S, Natarajan A, Oupicky D, Hopkins CR, Dhawan P and Singh AB: PIK3C3 inhibition promotes sensitivity to colon cancer therapy by inhibiting cancer stem cells. Cancers (Basel). 13:21682021. View Article : Google Scholar : PubMed/NCBI | |
Ye GD, Sun GB, Jiao P, Chen C, Liu QF, Huang XL, Zhang R, Cai WY, Li SN, Wu JF, et al: OVOL2, an inhibitor of WNT signaling, reduces invasive activities of human and mouse cancer cells and is down-regulated in human colorectal tumors. Gastroenterology. 150:659–671.e16. 2016. View Article : Google Scholar | |
Monin MB, Krause P, Stelling R, Bocuk D, Niebert S, Klemm F, Pukrop T and Koenig S: The anthelmintic niclosamide inhibits colorectal cancer cell lines via modulation of the canonical and noncanonical Wnt signaling pathway. J Surg Res. 203:193–205. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Tao J, Jiang Z, Guo D and Tang J: Pimozide suppresses colorectal cancer via inhibition of Wnt/β-catenin signaling pathway. Life Sci. 209:267–273. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fako V, Yu Z, Henrich CJ, Ransom T, Budhu AS and Wang XW: Inhibition of wnt/β-catenin signaling in hepatocellular carcinoma by an antipsychotic drug pimozide. Int J Biol Sci. 12:768–775. 2016. View Article : Google Scholar : | |
Al-Dali AM, Weiher H and Schmidt-Wolf IGH: Utilizing ethacrynic acid and ciclopirox olamine in liver cancer. Oncol Lett. 16:6854–6860. 2018.PubMed/NCBI | |
Liu Q, Zeng A, Liu Z, Wu C and Song L: Liver organoids: From fabrication to application in liver diseases. Front Physiol. 13:9562442022. View Article : Google Scholar : PubMed/NCBI | |
Caspi M, Wittenstein A, Kazelnik M, Shor-Nareznoy Y and Rosin-Arbesfeld R: Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders. Adv Drug Deliv Rev. 169:118–136. 2021. View Article : Google Scholar |