Dual inhibition of EGFR‑VEGF: An effective approach to the treatment of advanced non‑small cell lung cancer with EGFR mutation (Review)
- Authors:
- Qian Wang
- Anqi Zeng
- Min Zhu
- Linjiang Song
-
Affiliations: School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China, Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, P.R. China - Published online on: January 3, 2023 https://doi.org/10.3892/ijo.2023.5474
- Article Number: 26
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bade BC and Dela Cruz CS: Lung cancer 2020: Epidemiology, etiology, and prevention. Clin Chest Med. 41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schabath MB and Cote ML: Cancer progress and priorities: Lung cancer. Cancer Epidemiol Biomarkers Prev. 28:1563–1579. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Le X, Nilsson M, Goldman J, Reck M, Nakagawa K, Kato T, Ares LP, Frimodt-Moller B, Wolff K, Visseren-Grul C, et al: Dual EGFR-VEGF pathway inhibition: A promising strategy for patients with EGFR-Mutant NSCLC. J Thorac Oncol. 16:205–215. 2021. View Article : Google Scholar | |
de Sousa VML and Carvalho L: Heterogeneity in lung cancer. Pathobiology. 85:96–107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sousa V, Espírito Santo J, Silva M, Cabral T, Alarcão AM, Gomes A, Couceiro P and Carvalho L: EGFR/erB-1, HER2/erB-2, CK7, LP34, Ki67 and P53 expression in preneoplastic lesions of bronchial epithelium: An immunohistochemical and genetic study. Virchows Arch. 458:571–581. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thun MJ: Early landmark studies of smoking and lung cancer. Lancet Oncol. 11:12002010. View Article : Google Scholar : PubMed/NCBI | |
Warren GW, Alberg AJ, Kraft AS and Cummings KM: The 2014 surgeon general's report: 'The health consequences of smoking-50 years of progress ': A paradigm shift in cancer care. Cancer. 120:1914–1916. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alberg AJ, Brock MV, Ford JG, Samet JM and Spivack SD: Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 143(5 Suppl): e1S–e29S. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peto J: That the effects of smoking should be measured in pack-years: Misconceptions 4. Br J Cancer. 107:406–407. 2012. View Article : Google Scholar : PubMed/NCBI | |
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum. 83:1–1438. 2004.PubMed/NCBI | |
Murphy SE, Palomino A, Hecht SS and Hoffmann D: Dose-response study of DNA and hemoglobin adduct formation by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in F344 rats. Cancer Res. 50:5446–5452. 1990.PubMed/NCBI | |
Jalas JR, McIntee EJ, Kenney PM, Upadhyaya P, Peterson LA and Hecht SS: Stereospecific deuterium substitution attenuates the tumorigenicity and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Dose-response study of DNA and hemoglobin adduct formation by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in F344 rats. Chem Res Toxicol. 16:794–806. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hecht SS: Progress and challenges in selected areas of tobacco carcinogenesis. Chem Res Toxicol. 21:160–171. 2008. View Article : Google Scholar | |
Gibbons DL, Byers LA and Kurie JM: Smoking, p53 mutation, and lung cancer. Mol Cancer Res. 12:3–13. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brennan P, Buffler PA, Reynolds P, Wu AH, Wichmann HE, Agudo A, Pershagen G, Jöckel KH, Benhamou S, Greenberg RS, et al: Secondhand smoke exposure in adulthood and risk of lung cancer among never smokers: A pooled analysis of two large studies. Int J Cancer. 109:125–131. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hori M, Tanaka H, Wakai K, Sasazuki S and Katanoda K: Secondhand smoke exposure and risk of lung cancer in Japan: A systematic review and meta-analysis of epidemiologic studies. Jpn J Clin Oncol. 46:942–951. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heloma A, Jaakkola MS, Kähkönen E and Reijula K: The short-term impact of national smoke-free workplace legislation on passive smoking and tobacco use. Am J Public Health. 91:1416–1418. 2001. View Article : Google Scholar : PubMed/NCBI | |
Klebe S, Leigh J, Henderson DW and Nurminen M: Asbestos, smoking and lung cancer: An update. Int J Environ Res Public Health. 17:2582019. View Article : Google Scholar | |
Ngamwong Y, Tangamornsuksan W, Lohitnavy O, Chaiyakunapruk N, Scholfield CN, Reisfeld B and Lohitnavy M: Additive synergism between asbestos and smoking in lung cancer risk: A systematic review and meta-analysis. PLoS One. 10:e01357982015. View Article : Google Scholar : PubMed/NCBI | |
Villeneuve PJ, Parent MÉ, Harris SA and Johnson KC; Canadian Cancer Registries Epidemiology Research Group: Occupational exposure to asbestos and lung cancer in men: Evidence from a population-based case-control study in eight Canadian provinces. BMC Cancer. 12:5952012. View Article : Google Scholar : PubMed/NCBI | |
Topinka JB, Loli P, Dusinská M, Hurbánková M, Kováciková Z, Volkovová K, Kazimírová A, Barancoková M, Tatrai E, Wolff T, et al: Mutagenesis by man-made mineral fibres in the lung of rats. Mutat Res. 595:174–183. 2006. View Article : Google Scholar | |
Ketfi A, Zanoun N, Laouedj I, Gharnaout M and Fraga S: Primary lung cancer and occupational exposure in a North African population. Pan Afr Med J. 37:1202020.In French. | |
Zhang X, Jiang N, Wang L, Liu H and He R: Chronic obstructive pulmonary disease and risk of lung cancer: A meta-analysis of prospective cohort studies. Oncotarget. 8:78044–78056. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qu YL, Liu J, Zhang LX, Wu CM, Chu AJ, Wen BL, Ma C, Yan XY, Zhang X, Wang DM, et al: Asthma and the risk of lung cancer: A meta-analysis. Oncotarget. 8:11614–11620. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bozinovski S, Vlahos R, Anthony D, McQualter J, Anderson G, Irving L and Steinfort D: COPD and squamous cell lung cancer: Aberrant inflammation and immunity is the common link. Br J Pharmacol. 173:635–648. 2016. View Article : Google Scholar : | |
Ghosh A, Boucher RC and Tarran R: Airway hydration and COPD. Cell Mol Life Sci. 72:3637–3652. 2015. View Article : Google Scholar : PubMed/NCBI | |
Keikha M and Esfahani BN: The relationship between tuberculosis and lung cancer. Adv Biomed Res. 7:582018. View Article : Google Scholar : PubMed/NCBI | |
Brenner DR, McLaughlin JR and Hung RJ: Previous lung diseases and lung cancer risk: A systematic review and meta-analysis. PLoS One. 6:e174792011. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhu M, Zhou W, Du J, Xiang Y, Shu XO, Hu Z, Zhou W, Chen K, Xu J, et al: Estimation of heritability for nine common cancers using data from genome-wide association studies in Chinese population. Int J Cancer. 140:329–336. 2017. View Article : Google Scholar : | |
Sampson JN, Wheeler WA, Yeager M, Panagiotou O, Wang Z, Berndt SI, Lan Q, Abnet CC, Amundadottir LT, Figueroa JD, et al: Analysis of heritability and shared heritability based on genome-wide association studies for thirteen cancer types. J Natl Cancer Inst. 107:djv2792015. View Article : Google Scholar : PubMed/NCBI | |
McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, Caporaso NE, Johansson M, Xiao X, Li Y, et al: Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet 4. 9:1126–1132. 2017. View Article : Google Scholar | |
Bossé Y and Amos CI: A decade of GWAS results in lung cancer. Cancer Epidemiol Biomarkers Prev. 27:363–379. 2018. View Article : Google Scholar | |
Dai J, Lv J, Zhu M, Wang Y, Qin N, Ma H, He YQ, Zhang R, Tan W, Fan J, et al: Identification of risk loci and a polygenic risk score for lung cancer: A large-scale prospective cohort study in Chinese populations. Lancet Respir Med. 7:881–891. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sobue T, Moriyama N, Kaneko M, Kusumoto M, Kobayashi T, Tsuchiya R, Kakinuma R, Ohmatsu H, Nagai K, Nishiyama H, et al: Screening for lung cancer with low-dose helical computed tomography: Anti-lung cancer association project. J Clin Oncol. 20:911–920. 2002. View Article : Google Scholar : PubMed/NCBI | |
Toyoda Y, Nakayama T, Kusunoki Y, Iso H and Suzuki T: Sensitivity and specificity of lung cancer screening using chest low-dose computed tomography. Br J Cancer. 98:1602–1607. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, von Schulthess GK and Steinert HC: Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 348:2500–2507. 2003. View Article : Google Scholar : PubMed/NCBI | |
Guhlmann A, Storck M, Kotzerke J, Moog F, Sunder-Plassmann L and Reske SN: Lymph node staging in non-small cell lung cancer: Evaluation by [18F]FDG positron emission tomography (PET). Thorax. 52:438–441. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Prindiville SA, Miller YE, Franklin WA, Dempsey EC, Murphy JR, Bunn PA Jr and Kennedy TC: Fluorescence versus white-light bronchoscopy for detection of preneoplastic lesions: A randomized study. J Natl Cancer Inst. 93:1385–1391. 2001. View Article : Google Scholar : PubMed/NCBI | |
Arroliga AC and Matthay RA: The role of bronchoscopy in lung cancer. Clin Chest Med. 14:87–98. 1993. View Article : Google Scholar : PubMed/NCBI | |
Risse EK, Vooijs GP and van't Hof MA: Relationship between the cellular composition of sputum and the cytologic diagnosis of lung cancer. Acta Cytol. 31:170–176. 1987.PubMed/NCBI | |
Tsoulos N, Papadopoulou E, Metaxa-Mariatou V, Tsaousis G, Efstathiadou C, Tounta G, Scapeti A, Bourkoula E, Zarogoulidis P, Pentheroudakis G, et al: Tumor molecular profiling of NSCLC patients using next generation sequencing. Oncol Rep. 38:3419–3429. 2017.PubMed/NCBI | |
Xie Y, Todd NW, Liu Z, Zhan M, Fang H, Peng H, Alattar M, Deepak J, Stass SA and Jiang F: Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 6. 7:170–176. 2010. View Article : Google Scholar | |
Spira A, Beane JE, Shah V, Steiling K, Liu G, Schembri F, Gilman S, Dumas YM, Calner P, Sebastiani P, et al: Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med. 13:361–366. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rotunno M, Hu N, Su H, Wang C, Goldstein AM, Bergen AW, Consonni D, Pesatori AC, Bertazzi PA, Wacholder S, et al: A gene expression signature from peripheral whole blood for stage I lung adenocarcinoma. Cancer Prev Res (Phila). 4:1599–1608. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pennell NA, Arcila ME, Gandara DR and West H: Biomarker testing for patients with advanced non-small cell lung cancer: Real-world issues and tough choices. Am Soc Clin Oncol Educ Book. 39:531–542. 2019. View Article : Google Scholar : PubMed/NCBI | |
Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, Mok TS, Reck M, Van Schil PE, Hellmann MD, et al: Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 29(Suppl 4): iv192–iv237. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Planchard D, Lu S, Sun H, Yamamoto N, Kim DW, Tan DSW, Yang JC, Azrif M, Mitsudomi T, et al: Pan-Asian adapted clinical practice guidelines for the management of patients with metastatic non-small-cell lung cancer: A CSCO-ESMO initiative endorsed by JSMO, KSMO, MOS, SSO and TOS. Ann Oncol. 30:171–210. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li BT, Ross DS, Aisner DL, Chaft JE, Hsu M, Kako SL, Kris MG, Varella-Garcia M and Arcila ME: HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J Thorac Oncol. 11:414–419. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reungwetwattana T, Liang Y, Zhu V and Ou SI: The race to target MET exon 14 skipping alterations in non-small cell lung cancer: The why, the how, the who, the unknown, and the inevitable. Lung Cancer. 103:27–37. 2017. View Article : Google Scholar | |
Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL, Cabanillas ME, Wirth LJ, Stock S, Smith S, Lauriault V, et al: Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol. 29:1869–1876. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cocco E, Scaltriti M and Drilon A: NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 15:731–747. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ferrer I, Zugazagoitia J, Herbertz S, John W, Paz-Ares L and Schmid-Bindert G: KRAS-mutant non-small cell lung cancer: From biology to therapy. Lung Cancer. 124:53–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Edell ES and Cortese DA: Photodynamic therapy in the management of early superficial squamous cell carcinoma as an alternative to surgical resection. Chest. 102:1319–1322. 1992. View Article : Google Scholar : PubMed/NCBI | |
Hotta K, Matsuo K, Ueoka H, Kiura K, Tabata M and Tanimoto M: Role of adjuvant chemotherapy in patients with resected non-small-cell lung cancer: Reappraisal with a meta-analysis of randomized controlled trials. J Clin Oncol. 22:3860–3867. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lemjabbar-Alaoui H, Hassan OU, Yang YW and Buchanan P: Lung cancer: Biology and treatment options. Biochim Biophys Acta. 1856:189–210. 2015.PubMed/NCBI | |
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sangha R, Price J and Butts CA: Adjuvant therapy in non-small cell lung cancer: Current and future directions. Oncologist. 15:862–872. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, Dunant A, Torri V, Rosell R, Seymour L, et al: Lung adjuvant cisplatin evaluation: A pooled analysis by the LACE collaborative group. J Clin Oncol. 26:3552–3559. 2008. View Article : Google Scholar : PubMed/NCBI | |
Travis WD, Brambilla E and Riely GJ: New pathologic classification of lung cancer: Relevance for clinical practice and clinical trials. J Clin Oncol. 31:992–1001. 2013. View Article : Google Scholar : PubMed/NCBI | |
Scagliotti GV, Fossati R, Torri V, Crinò L, Giaccone G, Silvano G, Martelli M, Clerici M, Cognetti F and Tonato M; Adjuvant Lung Project Italy/European Organisation for Research Treatment of Cancer-Lung Cancer Cooperative Group Investigators: Randomized study of adjuvant chemotherapy for completely resected stage I, II, or IIIA non-small-cell Lung cancer. J Natl Cancer Inst. 95:1453–1461. 2003. View Article : Google Scholar : PubMed/NCBI | |
Winton T, Livingston R, Johnson D, Rigas J, Johnston M, Butts C, Cormier Y, Goss G, Inculet R, Vallieres E, et al: Vinorelbine plus cisplatin vs observation in resected non-small-cell lung cancer. N Engl J Med. 352:2589–2597. 2005. View Article : Google Scholar : PubMed/NCBI | |
Alexander M, Kim SY and Cheng H: Update 2020: Management of non-small cell lung cancer. Lung. 198:897–907. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa K, Garon EB, Seto T, Nishio M, Ponce Aix S, Paz-Ares L, Chiu CH, Park K, Novello S, Nadal E, et al: Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20:1655–1669. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gray JE, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, Cho BC, et al: Three-year overall survival with durvalumab after chemoradiotherapy in stage III NSCLC-update from PACIFIC. J Thorac Oncol. 15:288–293. 2020. View Article : Google Scholar | |
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et al: Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 377:1919–1929. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arteaga CL: The epidermal growth factor receptor: From mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol. 19(Suppl 18): 32S–40S. 2001.PubMed/NCBI | |
Yarden Y and Sliwkowski MX: Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2:127–137. 2001. View Article : Google Scholar : PubMed/NCBI | |
Herbst RS: Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 59(Suppl 2): S21–S26. 2004. View Article : Google Scholar | |
Laskin JJ and Sandler AB: Epidermal growth factor receptor inhibitors in lung cancer therapy. Semin Respir Crit Care Med. 25(Suppl 1): S17–S27. 2004. View Article : Google Scholar | |
Ellis LM: Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am. 18:1007–1021. viii2004. View Article : Google Scholar : PubMed/NCBI | |
Salomon DS, Brandt R, Ciardiello F and Normanno N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 19:183–232. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Scagliotti GV, Langer CJ, Varella-Garcia M and Franklin WA: Epidermal growth factor family of receptors in preneoplasia and lung cancer: Perspectives for targeted therapies. Lung Cancer. 41(Suppl 1): S29–S42. 2003. View Article : Google Scholar : PubMed/NCBI | |
Midha A, Dearden S and McCormack R: EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: A systematic review and global map by ethnicity (mutMapII). Am J Cancer Res. 5:2892–2911. 2015.PubMed/NCBI | |
Goldstein NI, Prewett M, Zuklys K, Rockwell P and Mendelsohn J: Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res. 1:1311–1318. 1995.PubMed/NCBI | |
Prewett M, Rothman M, Waksal H, Feldman M, Bander NH and Hicklin DJ: Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. Clin Cancer Res. 4:2957–2966. 1998.PubMed/NCBI | |
Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 354:567–578. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xiong HQ, Rosenberg A, LoBuglio A, Schmidt W, Wolff RA, Deutsch J, Needle M and Abbruzzese JL: Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: A multicenter phase II Trial. J Clin Oncol. 22:2610–2616. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim ES: Cetuximab as a single agent or in combination with chemotherapy in lung cancer. Clin Lung Cancer. 6(Suppl 2): S80–S84. 2004. View Article : Google Scholar | |
Carmeliet P: Angiogenesis in health and disease. Nat Med. 9:653–660. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N and Adamis AP: Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 15:385–403. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N, Gerber HP and LeCouter J: The biology of VEGF and its receptors. Nat Med. 9:669–676. 2003. View Article : Google Scholar : PubMed/NCBI | |
Karkkainen MJ, Mäkinen T and Alitalo K: Lymphatic endothelium: A new frontier of metastasis research. Nat Cell Biol. 4:E2–E5. 2002. View Article : Google Scholar : PubMed/NCBI | |
Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL and Mihu CM: Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 59:455–467. 2018. | |
Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck TF, Pelletier N and Ferrara N: Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem. 276:3222–3230. 2001. View Article : Google Scholar | |
Muñoz-Chápuli R, Quesada AR and Angel Medina M: Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci. 61:2224–2243. 2004. View Article : Google Scholar : PubMed/NCBI | |
Roengvoraphoj M, Tsongalis GJ, Dragnev KH and Rigas JR: Epidermal growth factor receptor tyrosine kinase inhibitors as initial therapy for non-small cell lung cancer: Focus on epidermal growth factor receptor mutation testing and mutation-positive patients. Cancer Treat Rev. 39:839–850. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zeng A, Wang Q, Chen M, Zhu S and Song L: Regulatory function of DNA methylation mediated lncRNAs in gastric cancer. Cancer Cell Int. 22:2272022. View Article : Google Scholar : PubMed/NCBI | |
Tammela T, Enholm B, Alitalo K and Paavonen K: The biology of vascular endothelial growth factors. Cardiovasc Res. 65:550–563. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N: Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: Therapeutic implications. Semin Oncol. 29(Suppl 6): S10–S14. 2002. View Article : Google Scholar | |
Longo R, Sarmiento R, Fanelli M, Capaccetti B, Gattuso D and Gasparini G: Anti-angiogenic therapy: Rationale, challenges and clinical studies. Angiogenesis. 5:237–256. 2002. View Article : Google Scholar | |
Manzo A, Montanino A, Carillio G, Costanzo R, Sandomenico C, Normanno N, Piccirillo MC, Daniele G, Perrone F, Rocco G and Morabito A: Angiogenesis inhibitors in NSCLC. Int J Mol Sci. 18:20212017. View Article : Google Scholar : PubMed/NCBI | |
Tabernero J: The role of VEGF and EGFR inhibition: Implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res. 5:203–220. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vallböhmer D, Zhang W, Gordon M, Yang DY, Yun J, Press OA, Rhodes KE, Sherrod AE, Iqbal S, Danenberg KD, et al: Molecular determinants of cetuximab efficacy. J Clin Oncol. 23:3536–3544. 2005. View Article : Google Scholar : PubMed/NCBI | |
Viloria-Petit A, Crombet T, Jothy S, Hicklin D, Bohlen P, Schlaeppi JM, Rak J and Kerbel RS: Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: A role for altered tumor angiogenesis. Cancer Res. 61:5090–5101. 2001.PubMed/NCBI | |
Rak J, Yu JL, Kerbel RS and Coomber BL: What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors? Cancer Res. 62:1931–1934. 2002.PubMed/NCBI | |
Bergers G, Song S, Meyer-Morse N, Bergsland E and Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 111:1287–1295. 2003. View Article : Google Scholar : PubMed/NCBI | |
Viloria-Petit AM and Kerbel RS: Acquired resistance to EGFR inhibitors: Mechanisms and prevention strategies. Int J Radiat Oncol Biol Phys. 58:914–926. 2004. View Article : Google Scholar : PubMed/NCBI | |
Seto T, Kato T, Nishio M, Goto K, Atagi S, Hosomi Y, Yamamoto N, Hida T, Maemondo M, Nakagawa K, et al: Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): An open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 15:1236–1244. 2014. View Article : Google Scholar : PubMed/NCBI | |
Saito H, Fukuhara T, Furuya N, Watanabe K, Sugawara S, Iwasawa S, Tsunezuka Y, Yamaguchi O, Okada M, Yoshimori K, et al: Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): Interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 20:625–635. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang TT, Wang RM, Yang Z and Chen GB: Dual inhibiting EGFR and VEGF pathways versus EGFR-TKIs alone in the treatment of advanced non-small-cell lung cancer: A meta-analysis of randomized controlled trials. Clin Transl Oncol. 18:576–581. 2016. View Article : Google Scholar | |
Qi WX, Wang Q, Jiang YL, Sun YJ, Tang LN, He AN, Min DL, Lin F, Shen Z and Yao Y: Overall survival benefits for combining targeted therapy as second-line treatment for advanced non-small-cell-lung cancer: A meta-analysis of published data. PLoS One. 8:e556372013. View Article : Google Scholar : PubMed/NCBI |