Perspectives on miRNAs directly targeting BDNF for cancer diagnosis and treatment (Review)
- Authors:
- Ziteng Xie
- Xiaomeng Xu
- Wenbo Cao
- Luyun He
- Chen Kou
- Jiajia He
- Yaping Guo
- Mingjin Yue
- Saijun Mo
-
Affiliations: Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China, Henan Tianxing Education and Media Company, Limited, Zhengzhou, Henan 450001, P.R. China - Published online on: January 10, 2023 https://doi.org/10.3892/ijo.2023.5478
- Article Number: 30
This article is mentioned in:
Abstract
Colucci-D'amato L, Speranza L and Volpicelli F: Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci. 21:77772020. View Article : Google Scholar : PubMed/NCBI | |
Radin DP and Patel P: BDNF: An oncogene or tumor suppressor? Anticancer Res. 37:3983–3990. 2017.PubMed/NCBI | |
Meng L, Liu B, Ji R, Jiang X, Yan X and Xin Y: Targeting the BDNF/TrkB pathway for the treatment of tumors. Oncol Lett. 17:2031–2039. 2019.PubMed/NCBI | |
Pruunsild P, Kazantseva A, Aid T, Palm K and Timmusk T: Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics. 90:397–406. 2007. View Article : Google Scholar : PubMed/NCBI | |
De la Cruz-Morcillo MA, Berger J, Sánchez-Prieto R, Saada S, Naves T, Guillaudeau A, Perraud A, Sindou P, Lacroix A, Descazeaud A, et al: p75 neurotrophin receptor and pro-BDNF promote cell survival and migration in clear cell renal cell carcinoma. Oncotarget. 7:34480–34497. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K, Dai Y, Zang C, Liu W, Liu J, et al: BDNF-TrkB and proBDNF-p75NTR/sortilin signaling pathways are involved in mitochondria-mediated neuronal apoptosis in dorsal root ganglia after sciatic nerve transection. CNS Neurol Disord Drug Targets. 19:66–82. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Zhou L, Yang M, Lim Y, Zhu YH, Fu DL, Li ZW, Zhong JH, Xiao ZC and Zhou XF: ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro Oncol. 15:990–1007. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Zhou LI, Lim Y, Yang M, Zhu YH, Li ZW, Fu DL and Zhou XF: Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues. Oncol Lett. 10:223–227. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yap NY, Tan NYT, Tan CJ, Loh KW, Ng RCH, Ho HK and Chan A: Associations of plasma brain-derived neurotrophic factor (BDNF) and Val66Met polymorphism (rs6265) with long-term cancer-related cognitive impairment in survivors of breast cancer. Breast Cancer Res Treat. 183:683–696. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hall D, Dhilla A, Charalambous A, Gogos JA and Karayiorgou M: Sequence variants of the brain-derived neurotrophic factor (BDNF) gene are strongly associated with obsessive-compulsive disorder. Am J Hum Genet. 73:370–376. 2003. View Article : Google Scholar : PubMed/NCBI | |
D'Addario C, Bellia F, Benatti B, Grancini B, Vismara M, Pucci M, De Carlo V, Viganò C, Galimberti D, Fenoglio C, et al: Exploring the role of BDNF DNA methylation and hydroxymethylation in patients with obsessive compulsive disorder. J Psychiatr Res. 114:17–23. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kleimann A, Kotsiari A, Sperling W, Gröschl M, Heberlein A, Kahl KG, Hillemacher T, Bleich S, Kornhuber J and Frieling H: BDNF serum levels and promoter methylation of BDNF exon I, IV and VI in depressed patients receiving electroconvulsive therapy. J Neural Transm (Vienna). 122:925–928. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zou W, Hu X and Jiang L: Advances in regulating tumorigenicity and metastasis of cancer through TrkB signaling. Curr Cancer Drug Targets. 20:779–788. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang CS, Kavalali ET and Monteggia LM: BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell. 185:62–76. 2022. View Article : Google Scholar : PubMed/NCBI | |
Arora S, Kanekiyo T and Singh J: Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer's disease pathology in transgenic mouse model. Int J Biol Macromol. 208:901–911. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Kuroiwa M, Oakden W, Paul BT, Noman A, Chen J, Lin V, Dimitrijevic A, Stanisz G and Le TN: Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury. Mol Ther. 30:519–533. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI | |
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci. 16:2628–2647. 2020. View Article : Google Scholar : PubMed/NCBI | |
Takahashi RU, Prieto-Vila M, Kohama I and Ochiya T: Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci. 110:1140–1147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng F, Yang Z, Huang F, Yin L, Yan G and Gong G: microRNA-107 inhibits gastric cancer cell proliferation and metastasis by targeting PI3K/AKT pathway. Microb Pathog. 121:110–114. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Xu H, Wei W, Wang Z, Zhang Q, De W and Shu Y: circHIPK3 promotes cell proliferation and migration of gastric cancer by sponging miR-107 and regulating BDNF expression. Onco Targets Ther. 13:1613–1624. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ren J, Huang HJ, Gong Y, Yue S, Tang LM and Cheng SY: MicroRNA-206 suppresses gastric cancer cell growth and metastasis. Cell Biosci. 4:262014. View Article : Google Scholar : PubMed/NCBI | |
Ding D, Hou R, Gao Y and Feng Y: miR-613 inhibits gastric cancer progression through repressing brain derived neurotrophic factor. Exp Ther Med. 15:1735–1741. 2018.PubMed/NCBI | |
Xu AJ, Fu LN, Wu HX, Yao XL and Meng R: MicroRNA-744 inhibits tumor cell proliferation and invasion of gastric cancer via targeting brain derived neurotrophic factor. Mol Med Rep. 16:5055–5061. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hong W, Zhang Y, Ding J, Yang Q, Xie H and Gao X: circHIPK3 acts as competing endogenous RNA and promotes non-small-cell lung cancer progression through the miR-107/BDNF signaling pathway. Biomed Res Int. 2020:60759022020. View Article : Google Scholar : PubMed/NCBI | |
Li F, Wang X and Yang L: MicroRNA-147 targets BDNF to inhibit cell proliferation, migration and invasion in non-small cell lung cancer. Oncol Lett. 20:1931–1937. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma R, Zhu P, Liu S, Gao B and Wang W: miR-496 suppress tumorigenesis via targeting BDNF-mediated PI3K/Akt signaling pathway in non-small cell lung cancer. Biochem Biophys Res Commun. 518:273–277. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao B, Hao S, Tian W, Jiang Y, Zhang S, Guo L, Zhao J, Zhang G, Yan J and Luo D: MicroRNA-107 is downregulated and having tumor suppressive effect in breast cancer by negatively regulating brain-derived neurotrophic factor. J Gene Med. 19:e29322017. View Article : Google Scholar | |
Zhang HY, Xing MQ, Guo J, Zhao JC, Chen X, Jiang Z, Zhang H and Dong Q: Long noncoding RNA DLX6-AS1 promotes neuroblastoma progression by regulating miR-107/BDNF pathway. Cancer Cell Int. 19:3132019. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Yan P, Guo FF, Liu HJ and Zhao ZF: MiR-1-3p inhibits cell proliferation and invasion by regulating BDNF-TrkB signaling pathway in bladder cancer. Neoplasma. 65:89–96. 2018. View Article : Google Scholar : PubMed/NCBI | |
Long J, Jiang C, Liu B, Fang S and Kuang M: MicroRNA-15a-5p suppresses cancer proliferation and division in human hepatocellular carcinoma by targeting BDNF. Tumour Biol. 37:5821–5828. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun YX, Yang J, Wang PY, Li YJ, Xie SY and Sun RP: Cisplatin regulates SH-SY5Y cell growth through downregulation of BDNF via miR-16. Oncol Rep. 30:2343–2349. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Guo X, Zang M, Wang P, Xue S and Chen G: Long non-coding RNA LINC00152 promotes cell growth and invasion of papillary thyroid carcinoma by regulating the miR-497/BDNF axis. J Cell Physiol. 234:1336–1345. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Zou W, Liu D, Qin G and Jiang L: The down-regulation of TrkB alleviates the malignant biological behavior and cancer stem-like property of laryngeal cancer. Cancer Manag Res. 12:6865–6875. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Wu W, Ge H, Li P and Wang Z: Up-regulation of miR-204 enhances anoikis sensitivity in epithelial ovarian cancer cell line via brain-derived neurotrophic factor pathway in vitro. Int J Gynecol Cancer. 25:944–952. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song D, Diao J, Yang Y and Chen Y: MicroRNA-382 inhibits cell proliferation and invasion of retinoblastoma by targeting BDNFmediated PI3K/AKT signalling pathway. Mol Med Rep. 16:6428–6436. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fei X, Jin HY, Gao Y, Kong LM and Tan XD: Hsa-miR-10a-5p promotes pancreatic cancer growth by BDNF/SEMA4C pathway. J Biol Regul Homeost Agents. 34:927–934. 2020.PubMed/NCBI | |
Nagpal N, Ahmad HM, Molparia B and Kulshreshtha R: MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis. 34:1889–1899. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nagpal N, Sharma S, Maji S, Durante G, Ferracin M, Thakur JK and Kulshreshtha R: Essential role of MED1 in the transcriptional regulation of ER-dependent oncogenic miRNAs in breast cancer. Sci Rep. 8:118052018. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Fu Z, Gao X, Wang R and Li Q: Long non-coding RNA XIST promotes retinoblastoma cell proliferation, migration, and invasion by modulating microRNA-191-5p/brain derived neurotrophic factor. Bioengineered. 12:1587–1598. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Fu X, Yu M and Li Z: Long intergenic non-protein coding RNA 1094 promotes initiation and progression of glioblastoma by promoting microRNA-577-regulated stabilization of brain-derived neurotrophic factor. Cancer Manag Res. 12:5619–5631. 2020. View Article : Google Scholar : PubMed/NCBI | |
Amuti A, Liu D, Maimaiti A, Yu Y, Yasen Y, Ma H, Li R, Deng S, Pang F and Tian Y: Doxorubicin inhibits osteosarcoma progression by regulating circ_0000006/miR-646/BDNF axis. J Orthop Surg Res. 16:6452021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Qi L, Zhang K and Wang F: MicroRNA-10a suppresses cell metastasis by targeting BDNF and predicted patients survival in renal cell carcinoma. J BUON. 26:250–258. 2021.PubMed/NCBI | |
Liu S, Jiang T, Zhong Y and Yu Y: miR-210 inhibits cell migration and invasion by targeting the brain-derived neurotrophic factor in glioblastoma. J Cell Biochem. 120:11375–11382. 2019. View Article : Google Scholar | |
Imam JS, Plyler JR, Bansal H, Prajapati S, Bansal S, Rebeles J, Chen HI, Chang YF, Panneerdoss S, Zoghi B, et al: Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS One. 7:e523972012. View Article : Google Scholar : PubMed/NCBI | |
Zhong KZ, Chen WW, Hu XY, Jiang AL and Zhao J: Clinicopathological and prognostic significance of microRNA-107 in human non small cell lung cancer. Int J Clin Exp Pathol. 7:4545–4551. 2014.PubMed/NCBI | |
Zhai L, Li Y, Lan X and Ai L: MicroRNA-10a-5p suppresses cancer proliferation and division in human cervical cancer by targeting BDNF. Exp Ther Med. 14:6147–6151. 2017.PubMed/NCBI | |
Zheng B and Chen T: MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma. Open Life Sci. 15:274–283. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu Y and Song J: MicroRNA-103 suppresses glioma cell proliferation and invasion by targeting the brain-derived neurotrophic factor. Mol Med Rep. 17:4083–4089. 2018.PubMed/NCBI | |
Ye J, Xie W, Zuo Y, Jing G and Tong J: MicroRNA-496 suppresses tumor cell proliferation by targeting BDNF in osteosarcoma. Exp Ther Med. 19:1425–1431. 2020.PubMed/NCBI | |
Song Y, Wang G, Zhuang J, Ni J, Zhang S, Ye Y and Xia W: MicroRNA-584 prohibits hepatocellular carcinoma cell proliferation and invasion by directly targeting BDNF. Mol Med Rep. 20:1994–2001. 2019.PubMed/NCBI | |
Climent M, Viggiani G, Chen YW, Coulis G and Castaldi A: MicroRNA and ROS crosstalk in cardiac and pulmonary diseases. Int J Mol Sci. 21:43702020. View Article : Google Scholar : PubMed/NCBI | |
Bjorkman KK, Buvoli M, Pugach EK, Polmear MM and Leinwand LA: miR-1/206 downregulates splicing factor Srsf9 to promote C2C12 differentiation. Skelet Muscle. 9:312019. View Article : Google Scholar : PubMed/NCBI | |
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, et al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang B, Shu Y and Liu P: miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med Oncol. 29:384–391. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A and Avan A: Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J Cell Biochem. 118:2502–2515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Sun W, Zhu L, Zhang H, Hou X, Liang J, Jiang X and Liu C: Knockdown of BDNF suppressed invasion of HepG2 and HCCLM3 cells, a mechanism associated with inactivation of RhoA or Rac1 and actin skeleton disorganization. APMIS. 120:469–476. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Sinha S, Schwartz JL and Adami GR: A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA. BMC Cancer. 19:6072019. View Article : Google Scholar : PubMed/NCBI | |
Garofalo S, D'Alessandro G, Chece G, Brau F, Maggi L, Rosa A, Porzia A, Mainiero F, Esposito V, Lauro C, et al: Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice. Nat Commun. 6:66232015. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Chang Z, Chiao LJ, Kang Y, Xia Q, Zhu C, Fleming JB, Evans DB and Chiao PJ: TrkBT1 induces liver metastasis of pancreatic cancer cells by sequestering Rho GDP dissociation inhibitor and promoting RhoA activation. Cancer Res. 69:7851–7859. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Zhang X, Jiang L, Li Y and Zheng Q: Tumor endothelial cell-derived extracellular vesicles contribute to tumor microenvironment remodeling. Cell Commun Signal. 20:972022. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Liu Q, Xiang Y, Gou X and Li W: Role of the tumor immune microenvironment in tumor immunotherapy. Oncol Lett. 23:532022. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Liu X, Lin EJ, Wang C, Choi EY, Riban V, Lin B and During MJ: Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell. 142:52–64. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu X, McMurphy T, Xiao R, Slater A, Huang W and Cao L: Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice. Mol Ther. 22:1275–1284. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xiao R, Bergin SM, Huang W, Slater AM, Liu X, Judd RT, Lin ED, Widstrom KJ, Scoville SD, Yu J, et al: Environmental and genetic activation of hypothalamic BDNF modulates T-cell immunity to exert an anticancer phenotype. Cancer Immunol Res. 4:488–497. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, Wang JF, Zhang Z, Lu S, Huang X, et al: Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol. 29:4781–4788. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ng EKO, Chong WWS, Jin H, Lam EKY, Shin VY, Yu J, Poon TCW, Ng SSM and Sung JJY: Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut. 58:1375–1381. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Huang D, Ni S, Peng Z, Sheng W and Du X: Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 127:118–126. 2010. View Article : Google Scholar : PubMed/NCBI | |
Toden S, Zumwalt TJ and Goel A: Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : PubMed/NCBI | |
Saw PE, Xu X, Chen J and Song EW: Non-coding RNAs: The new central dogma of cancer biology. Sci China Life Sci. 64:22–50. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Cheng Z, Wang Y and Han T: The risks of miRNA therapeutics: In a drug target perspective. Drug Des Devel Ther. 15:721–733. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chu YY, Ko CY, Wang SM, Lin PI, Wang HY, Lin WC, Wu DY, Wang LH and Wang JM: Bortezomib-induced miRNAs direct epigenetic silencing of locus genes and trigger apoptosis in leukemia. Cell Death Dis. 8:e31672017. View Article : Google Scholar : PubMed/NCBI | |
Ye LL, Cheng ZG, Cheng XE and Huang YL: Propofol regulates miR-1-3p/IGF1 axis to inhibit the proliferation and accelerates apoptosis of colorectal cancer cells. Toxicol Res (Camb). 10:696–705. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cui P, Hu J, Wang X, Xia Y, Ruan X and Cai M: Effects of propofol on invasion, migration and epithelial-mesenchymal transition of breast cancer MDA-MB-231 cells by up-regulating miR-204. Chin J Immunol. 36:2100–2104. 2020.(In Chinese). | |
Wang D, Yang T, Liu J, Liu Y, Xing N, He J, Yang J and Ai Y: Propofol inhibits the migration and invasion of glioma cells by blocking the PI3K/AKT pathway through miR-206/ROCK1 axis. Onco Targets Ther. 13:361–370. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi A, Luo J and Cao H: Propofol affects invasion and metastasis of lung adenocarcinoma cells by regulating hypoxia inducible factor-1α/microRNA-210 signaling pathway. Chin J Clin Pharmacol. 35:2314–2317. 2019.(In Chinese). | |
Wang L, Li K, Lin X, Yao Z, Wang S, Xiong X, Ning Z, Wang J, Xu X, Jiang Y, et al: Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 450:22–31. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen X, Li J and Xia C: Quercetin antagonizes esophagus cancer by modulating miR-1-3p/TAGLN2 pathway-dependent growth and metastasis. Nutr Cancer. 74:1872–1881. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Fang Z, Zha Z, Sun Q, Wang H, Sun M and Qiao B: Quercetin inhibits cell viability, migration and invasion by regulating miR-16/HOXA10 axis in oral cancer. Eur J Pharmacol. 847:11–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ahmed Youness R, Amr Assal R, Mohamed Ezzat S, Zakaria Gad M and Abdel Motaal A: A methoxylated quercetin glycoside harnesses HCC tumor progression in a TP53/miR-15/miR-16 dependent manner. Nat Prod Res. 34:1475–1480. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Feng T, Liu X and Liu Q: Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. Acta Pharm. 70:399–409. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ran H, Chen H, Pu J, Li M, Zhang Z and He Y: Effect of curcumin on apoptosis of PC3 cell line via down-regulating the expressions of MiR210 and TLR4/NF-κB signaling pathway. Pharmacol Clin Chin Mater. 37:64–68. 2021.(In Chinese). | |
Li Y, Lin Q, Chang S, Zhang R and Wang J: Vitamin D3 mediates miR-15a-5p inhibition of liver cancer cell proliferation via targeting E2F3. Oncol Lett. 20:292–298. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Ren L, Yu M, Liu X, Ma W, Huang L, Li X and Ye X: S-equol inhibits proliferation and promotes apoptosis of human breast cancer MCF-7 cells via regulating miR-10a-5p and PI3K/AKT pathway. Arch Biochem Biophys. 672:1080642019. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Li W and Han X: Skullcapflavone I inhibits proliferation of human colorectal cancer cells via down-regulation of miR-107 expression. Neoplasma. 66:203–210. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li H, Xia Z, Liu L, Pan G, Ding J, Liu J, Kang J, Li J, Jiang D and Liu W: Astragalus IV undermines multi-drug resistance and glycolysis of MDA-MB-231/ADR Cell line by depressing hsa_circ_0001982-miR-206/miR-613 axis. Cancer Manag Res. 13:5821–5833. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dan H, Lei H and JinMing H: Andrographolide inhibits proliferation and promotes apoptosis of prostate cancer cells by regulating miR-206/STC2. Chin J Gerontol. 39:4802–4807. 2019. | |
Buist M, Fuss D and Rastegar M: Transcriptional regulation of MECP2E1-E2 isoforms and BDNF by Metformin and Simvastatin through analyzing nascent RNA synthesis in a human brain cell Line. Biomolecules. 11:12532021. View Article : Google Scholar : PubMed/NCBI | |
Kumar P, Barua CC, Sulakhiya K and Sharma RK: Curcumin ameliorates cisplatin-induced nephrotoxicity and potentiates its anticancer activity in SD rats: Potential role of curcumin in breast cancer chemotherapy. Front Pharmacol. 8:1322017. View Article : Google Scholar : PubMed/NCBI | |
Alhusban L, Ayoub N and Alhusban A: ProBDNF is a novel mediator of the interaction between MDA-MB-231 breast cancer cells and brain microvascular endothelial cells. Curr Mol Med. 21:914–921. 2020. View Article : Google Scholar : PubMed/NCBI | |
Iqbal MUN, Yaqoob T, Ali SA and Khan TA: A functional polymorphism (rs6265, G>A) of brain-derived neurotrophic factor gene and breast cancer: An association study. Breast Cancer (Auckl). 13:11782234198449772019.PubMed/NCBI | |
Kim JM, Kang HJ, Kim SY, Kim SW, Shin IS, Kim HR, Park MH, Shin MG, Yoon JH and Yoon JS: BDNF promoter methylation associated with suicidal ideation in patients with breast cancer. Int J Psychiatry Med. 49:75–94. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Dinglin X, Cao S, Zheng S, Wu C, Chen W, Li Q, Hu Q, Zheng F, Wu Z, et al: Enhancer-driven lncRNA BDNF-AS induces endocrine resistance and malignant progression of breast cancer through the RNH1/TRIM21/mTOR cascade. Cell Rep. 31:1077532020. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Xiang Z, Wu H, He Q, Dou R, Lin Z, Yang C, Huang S, Song J, Di Z, et al: The lncRNA BDNF-AS/WDR5/FBXW7 axis mediates ferroptosis in gastric cancer peritoneal metastasis by regulating VDAC3 ubiquitination. Int J Biol Sci. 18:1415–1433. 2022. View Article : Google Scholar : PubMed/NCBI | |
Koh MJ, Jeung HC, Namkoong K, Chung HC and Kang JI: Influence of the BDNF Val66Met polymorphism on coping response to stress in patients with advanced gastric cancer. J Psychosom Res. 77:76–80. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo JC, Yang YJ, Zheng JF, Guo M, Wang XD, Gao YS, Fu LQ, Jiang XL, Fu LM and Huang T: Functional rs6265 polymorphism in the brain-derived neurotrophic factor gene confers protection against neurocognitive dysfunction in posttraumatic stress disorder among Chinese patients with hepatocellular carcinoma. J Cell Biochem. 120:10434–10443. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bai L, Zhang S, Zhou X, Li Y and Bai J: Brain-derived neurotrophic factor induces thioredoxin-1 expression through TrkB/Akt/CREB pathway in SH-SY5Y cells. Biochimie. 160:55–60. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hua Z, Gu X, Dong Y, Tan F, Liu Z, Thiele CJ and Li Z: PI3K and MAPK pathways mediate the BDNF/TrkB-increased metastasis in neuroblastoma. Tumour Biol. 37:16227–16236. 2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Ye HQ and Ren QC: Upregulation of the BDNF/TrKB pathway promotes epithelial-mesenchymal transition, as well as the migration and invasion of cervical cancer. Int J Oncol. 52:461–472. 2018.PubMed/NCBI | |
Okugawa Y, Tanaka K, Inoue Y, Kawamura M, Kawamoto A, Hiro J, Saigusa S, Toiyama Y, Ohi M, Uchida K, et al: Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br J Cancer. 108:121–130. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kojadinovic A, Laderian B and Mundi PS: Targeting TRK: A fast-tracked application of precision oncology and future directions. Crit Rev Oncol Hematol. 165:1034512021. View Article : Google Scholar : PubMed/NCBI | |
Bhangoo MS and Sigal D: TRK inhibitors: Clinical development of larotrectinib. Curr Oncol Rep. 21:142019. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Wang Y, Zhou C, Mei W and Zeng C: PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI | |
Kaboli PJ, Imani S, Jomhori M and Ling KH: Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs the current chemotherapy. Am J Cancer Res. 11:5155–5183. 2021.PubMed/NCBI | |
Duan Y, Haybaeck J and Yang Z: Therapeutic potential of PI3K/AKT/mTOR pathway in gastrointestinal stromal tumors: Rationale and progress. Cancers (Basel). 12:29722020. View Article : Google Scholar : PubMed/NCBI |