1
|
El-Serag HB: Hepatocellular carcinoma. N
Engl J Med. 365:1118–1127. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Yamashita T and Wang XW: Cancer stem cells
in the development of liver cancer. J Clin Invest. 123:1911–1918.
2013. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Lee TK, Castilho A, Cheung VC, Tang KH, Ma
S and Ng IO: CD24(+) liver tumor-initiating cells drive
self-renewal and tumor initiation through STAT3-mediated NANOG
regulation. Cell Stem Cell. 9:50–63. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chan LH, Luk ST and Ma S: Turning hepatic
cancer stem cells inside out-a deeper understanding through
multiple perspectives. Mol Cells. 38:202–209. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li XF, Chen C, Xiang DM, Qu L, Sun W, Lu
XY, Zhou TF, Chen SZ, Ning BF, Cheng Z, et al: Chronic
inflammation-elicited liver progenitor cell conversion to liver
cancer stem cell with clinical significance. Hepatology.
66:1934–1951. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sun C, Shui B, Zhao W, Liu H, Li W, Lee
JC, Doran R, Lee FK, Sun T, Shen QS, et al: Central role of
IP3R2-mediated Ca(2+) oscillation in self-renewal of liver cancer
stem cells elucidated by high-signal ER sensor. Cell Death Dis.
10:3962019. View Article : Google Scholar
|
8
|
Toraih EA, Fawzy MS, El-Falouji AI, Hamed
EO, Nemr NA, Hussein MH and Abd El Fadeal NM: Stemness-related
transcriptional factors and homing gene expression profiles in
hepatic differentiation and cancer. Mol Med. 22:653–663. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Villasante A, Piazzolla D, Li H,
Gomez-Lopez G, Djabali M and Serrano M: Epigenetic regulation of
Nanog expression by Ezh2 in pluripotent stem cells. Cell Cycle.
10:1488–1498. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Machida K, Chen CL, Liu JC, Kashiwabara C,
Feldman D, French SW, Sher L, Hyeongnam JJ and Tsukamoto H: Cancer
stem cells generated by alcohol, diabetes, and hepatitis C virus. J
Gastroenterol Hepatol. 27(Suppl 2): S19–S22. 2012. View Article : Google Scholar
|
11
|
Guo JC, Yang YJ, Zheng JF, Zhang JQ, Guo
M, Yang X, Jiang XL, Xiang L, Li Y, Ping H and Zhuo L: Silencing of
long noncoding RNA HOXA11-AS inhibits the Wnt signaling pathway via
the upregulation of HOXA11 and thereby inhibits the proliferation,
invasion, and self-renewal of hepatocellular carcinoma stem cells.
Exp Mol Med. 51:1–20. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Moon JH, Kwon S, Jun EK, Kim A, Whang KY,
Kim H, Oh S, Yoon BS and You S: Nanog-induced dedifferentiation of
p53-deficient mouse astrocytes into brain cancer stem-like cells.
Biochem Biophys Res Commun. 412:175–181. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ,
Gimotty PA, Guerra M, Guo W and Xu X: Acquired cancer stem cell
phenotypes through Oct4-mediated dedifferentiation. Oncogene.
31:4898–4911. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai
P, Chu PW, Lam CT, Poon RT and Fan ST: Significance of CD90+ cancer
stem cells in human liver cancer. Cancer Cell. 13:153–166. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Croce CM: Causes and consequences of
microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Esteller M: Non-coding RNAs in human
disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kim M, Civin CI and Kingsbury TJ:
MicroRNAs as regulators and effectors of hematopoietic
transcription factors. Wiley Interdiscip Rev RNA. 10:e15372019.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Shi DM, Bian XY, Qin CD and Wu WZ:
miR-106b-5p promotes stem cell-like properties of hepatocellular
carcinoma cells by targeting PTEN via PI3K/Akt pathway. Onco
Targets Ther. 11:571–585. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zheng Z, Liu J, Yang Z, Wu L, Xie H, Jiang
C, Lin B, Chen T, Xing C, Liu Z, et al: MicroRNA-452 promotes
stem-like cells of hepatocellular carcinoma by inhibiting Sox7
involving Wnt/β-catenin signaling pathway. Oncotarget.
7:28000–28012. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Onichtchouk D, Chen YG, Dosch R, Gawantka
V, Delius H, Massagué J and Niehrs C: Silencing of TGF-beta
signalling by the pseudoreceptor BAMBI. Nature. 401:480–485. 1999.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Yan X, Lin Z, Chen F, Zhao X, Chen H, Ning
Y and Chen YG: Human BAMBI cooperates with Smad7 to inhibit
transforming growth factor-beta signaling. J Biol Chem.
284:30097–30104. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mai Y, Zhang Z, Yang H, Dong P, Chu G,
Yang G and Sun S: BMP and activin membrane-bound inhibitor (BAMBI)
inhibits the adipogenesis of porcine preadipocytes through
Wnt/β-catenin signaling pathway. Biochem Cell Biol. 92:172–182.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lin Z, Gao C, Ning Y, He X, Wu W and Chen
YG: The pseudoreceptor BMP and activin membrane-bound inhibitor
positively modulates Wnt/beta-catenin signaling. J Biol Chem.
283:33053–33058. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang Q, Shi XE, Song C, Sun S, Yang G and
Li X: BAMBI Promotes C2C12 myogenic differentiation by enhancing
Wnt/β-Catenin signaling. Int J Mol Sci. 16:17734–17745. 2015.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu K, Song X, Ma H, Liu L, Wen X, Yu J,
Wang L and Hu S: Knockdown of BAMBI inhibits β-catenin and
transforming growth factor β to suppress metastasis of gastric
cancer cells. Mol Med Rep. 10:874–880. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tang T, Guo C, Xia T, Zhang R, Zen K, Pan
Y and Jin L: LncCCAT1 promotes breast cancer stem cell function
through activating WNT/β-catenin signaling. Theranostics.
9:7384–7402. 2019. View Article : Google Scholar :
|
27
|
Hoffmeyer K, Raggioli A, Rudloff S, Anton
R, Hierholzer A, Del Valle I, Hein K, Vogt R and Kemler R:
Wnt/β-catenin signaling regulates telomerase in stem cells and
cancer cells. Science. 336:1549–1554. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lu J, Wei JH, Feng ZH, Chen ZH, Wang YQ,
Huang Y, Fang Y, Liang YP, Cen JJ, Pan YH, et al: miR-106b-5p
promotes renal cell carcinoma aggressiveness and stem-cell-like
phenotype by activating Wnt/β-catenin signalling. Oncotarget.
8:21461–21471. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bentley DR: Whole-genome re-sequencing.
Curr Opin Genet Dev. 16:545–552. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
31
|
Edwards M, Wong SC, Chotpadiwetkul R,
Smirlis D, Phillips IR and Shephard EA: Transfection of primary
cultures of rat hepatocytes. Methods Mol Biol. 320:273–282.
2006.PubMed/NCBI
|
32
|
Yi J, Fan Y, Zhang L, Wang H, Mu T, Xie H,
Gao H, Liu M, Li S and Tang H: MiR-HCC2 Up-regulates BAMBI and
ELMO1 expression to facilitate the proliferation and EMT of
hepatocellular carcinoma cells. J Cancer. 10:3407–3419. 2019.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen T, Dai X, Dai J, Ding C, Zhang Z, Lin
Z, Hu J, Lu M, Wang Z, Qi Y, et al: AFP promotes HCC progression by
suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death
Dis. 11:8222020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Saliminejad K, Khorram Khorshid HR,
Soleymani Fard S and Ghaffari SH: An overview of microRNAs:
Biology, functions, therapeutics, and analysis methods. J Cell
Physiol. 234:5451–5465. 2019. View Article : Google Scholar
|
35
|
Mani SK, Zhang H, Diab A, Pascuzzi PE,
Lefrançois L, Fares N, Bancel B, Merle P and Andrisani O:
EpCAM-regulated intramembrane proteolysis induces a cancer stem
cell-like gene signature in hepatitis B virus-infected hepatocytes.
J Hepatol. 65:888–898. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Nusse R: Wnt signaling and stem cell
control. Cell Res. 18:523–527. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
de Sousa E Melo F and Vermeulen L: Wnt
signaling in cancer stem cell biology. Cancers (Basel). 8:602016.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Shaikh MV, Kala M and Nivsarkar M: CD90 a
potential cancer stem cell marker and a therapeutic target. Cancer
Biomark. 16:301–307. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shangguan L, Ti X, Krause U, Hai B, Zhao
Y, Yang Z and Liu F: Inhibition of TGF-β/Smad signaling by BAMBI
blocks differentiation of human mesenchymal stem cells to
carcinoma-associated fibroblasts and abolishes their protumor
effects. Stem Cells. 30:2810–2819. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Jho EH, Zhang T, Domon C, Joo CK, Freund
JN and Costantini F: Wnt/beta-catenin/Tcf signaling induces the
transcription of Axin2, a negative regulator of the signaling
pathway. Mol Cell Biol. 22:1172–1183. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick
R, Hanash S, Cho KR and Fearon ER: Activation of AXIN2 expression
by beta-catenin-T cell factor. A feedback repressor pathway
regulating Wnt signaling. J Biol Chem. 277:21657–21665. 2002.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang L, Shi S, Zhang J, Zhou F and ten
Dijke P: Wnt/β-catenin signaling changes C2C12 myoblast
proliferation and differentiation by inducing Id3 expression.
Biochem Biophys Res Commun. 419:83–88. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhu K, Li J, Sun J, Sun J, Guo Y, Tian H,
Li L, Zhang C, Shi M, Kong G and Li Z: Ring1 promotes the
transformation of hepatic progenitor cells into cancer stem cells
through the Wnt/β-catenin signaling pathway. J Cell Biochem.
121:3941–3951. 2020. View Article : Google Scholar
|
44
|
Wang H, Garzon R, Sun H, Ladner KJ, Singh
R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, et al:
NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis
and rhabdomyosarcoma. Cancer Cell. 14:369–381. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tsang DP, Wu WK, Kang W, Lee YY, Wu F, Yu
Z, Xiong L, Chan AW, Tong JH, Yang W, et al: Yin Yang 1-mediated
epigenetic silencing of tumour-suppressive microRNAs activates
nuclear factor-κB in hepatocellular carcinoma. J Pathol.
238:651–664. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Austen M, Cerni C, Luscher-Firzlaff JM and
Luscher B: YY1 can inhibit c-Myc function through a mechanism
requiring DNA binding of YY1 but neither its transactivation domain
nor direct interaction with c-Myc. Oncogene. 17:511–520. 1998.
View Article : Google Scholar : PubMed/NCBI
|