Targeting neddylation as a novel approach to lung cancer treatment (Review)
- Authors:
- Zhaochun Tian
- Jiafei Li
- Ruijie Ma
- Ting Li
- Zhigang Sun
- Shuhong Huang
-
Affiliations: Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, P.R. China, School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, P.R. China, Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China - Published online on: April 20, 2023 https://doi.org/10.3892/ijo.2023.5513
- Article Number: 65
-
Copyright: © Tian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Oudkerk M, Liu S, Heuvelmans MA, Walter JE and Field JK: Lung cancer LDCT screening and mortality reduction-evidence, pitfalls and future perspectives. Nat Rev Clin Oncol. 18:135–151. 2021. View Article : Google Scholar | |
Sachs E, Sartipy U and Jackson V: Sex and Survival After Surgery for Lung Cancer: A Swedish Nationwide Cohort. Chest. 159:2029–2039. 2021. View Article : Google Scholar : | |
Thai AA, Solomon BJ, Sequist LV, Gainor JF and Heist RS: Lung cancer. Lancet. 398:535–554. 2021. View Article : Google Scholar : PubMed/NCBI | |
Howington JA, Blum MG, Chang AC, Balekian AA and Murthy SC: Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 143(5 Suppl): e278S–e313S. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar | |
Watson IR, Irwin MS and Ohh M: NEDD8 pathways in cancer, Sine quibus non. Cancer Cell. 19:168–176. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kamitani T, Kito K, Nguyen HP and Yeh ET: Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem. 272:28557–28562. 1997. View Article : Google Scholar : PubMed/NCBI | |
Chung D and Dellaire G: The Role of the COP9 Signalosome and Neddylation in DNA damage signaling and repair. Biomolecules. 5:2388–2416. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Xu J, Tan M, Li H, Li H, Wei W and Sun Y: UBE2M Is a Stress-Inducible Dual E2 for neddylation and ubiquitylation that promotes targeted degradation of UBE2F. Mol Cell. 70:1008–1024.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF and Schulman BA: E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell. 33:483–495. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xirodimas DP, Saville MK, Bourdon JC, Hay RT and Lane DP: Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell. 118:83–97. 2004. View Article : Google Scholar : PubMed/NCBI | |
Abida WM, Nikolaev A, Zhao W, Zhang W and Gu W: FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem. 282:1797–1804. 2007. View Article : Google Scholar | |
Lee GW, Park JB, Park SY, Seo J, Shin SH, Park JW, Kim SJ, Watanabe M and Chun YS: The E3 ligase C-CBL inhibits cancer cell migration by neddylating the proto-oncogene c-Src. Oncogene. 37:5552–5568. 2018. View Article : Google Scholar : PubMed/NCBI | |
Broemer M, Tenev T, Rigbolt KT, Hempel S, Blagoev B, Silke J, Ditzel M and Meier P: Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell. 40:810–822. 2010. View Article : Google Scholar : PubMed/NCBI | |
Keuss MJ, Thomas Y, Mcarthur R, Wood NT, Knebel A and Kurz T: Characterization of the mammalian family of DCN-type NEDD8 E3 ligases. J Cell Sci. 129:1441–1454. 2016.PubMed/NCBI | |
Meyer-Schaller N, Chou YC, Sumara I, Martin DD, Kurz T, Katheder N, Hofmann K, Berthiaume LG, Sicheri F and Peter M: The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes. Proc Natl Acad Sci USA. 106:12365–12370. 2009. View Article : Google Scholar : PubMed/NCBI | |
He S, Cao Y, Xie P, Dong G and Zhang L: The Nedd8 Non-covalent binding region in the smurf HECT domain is critical to its ubiquitn ligase function. Sci Rep. 7:413642017. View Article : Google Scholar : PubMed/NCBI | |
Deshaies RJ and Joazeiro CA: RING domain E3 ubiquitin ligases. Annu Rev Biochem. 78:399–434. 2009. View Article : Google Scholar : PubMed/NCBI | |
Soucy TA, Dick LR, Smith PG, Milhollen MA and Brownell JE: The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer. 1:708–716. 2010. View Article : Google Scholar | |
Mendoza HM, Shen LN, Botting C, Lewis A, Chen J, Ink B and Hay RT: NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J Biol Chem. 278:25637–25643. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Zhu J, Chen W, Jiang Y, Hu T, Wang Y, Ye X, Zhan M, Ji C, Xu Z, et al: Induction of NEDD8-conjugating enzyme E2 UBE2F by platinum protects lung cancer cells from apoptosis and confers to platinum-insensitivity. Cell Death Dis. 11:9752020. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Jiang Y, Luo Q, Li L and Jia L: Neddylation: A novel modulator of the tumor microenvironment. Mol Cancer. 18:772019. View Article : Google Scholar : PubMed/NCBI | |
Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N and Schulman BA: Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 21:257–264. 2011. View Article : Google Scholar : PubMed/NCBI | |
Furukawa M, Zhang Y, McCarville J, Ohta T and Xiong Y: The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation, NEDD8 modification, and ubiquitin ligase activity of CUL1. Mol Cell Biol. 20:8185–8197. 2000. View Article : Google Scholar : PubMed/NCBI | |
Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M and Schulman BA: Structural insights into NEDD8 activation of cullin-RING ligases: Conformational control of conjugation. Cell. 134:995–1006. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim AY, Bommelje CC, Lee BE, Yonekawa Y, Choi L, Morris LG, Huang G, Kaufman A, Ryan RJ, Hao B, et al: SCCRO (DCUN1D1) is an essential component of the E3 complex for neddylation. J Biol Chem. 283:33211–33220. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y and Zheng N: Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell. 119:517–528. 2004. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Shen Y, Sullivan JA, Rubio V, Xiong Y, Sun TP and Deng XW: Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein Degradation. Plant Cell. 16:1870–1882. 2004. View Article : Google Scholar : PubMed/NCBI | |
Salon C, Brambilla E, Brambilla C, Lantuejoul S, Gazzeri S and Eymin B: Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: Relationships with CAND1 and cyclin E protein levels. J Pathol. 213:303–310. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li L, Kang J, Zhang W, Cai L, Wang S, Liang Y, Jiang Y, Liu X, Zhang Y, Ruan H, et al: Validation of NEDD8-conjugating enzyme UBC12 as a new therapeutic target in lung cancer. EBioMedicine. 45:81–91. 2019. View Article : Google Scholar : PubMed/NCBI | |
Podust VN, Brownell JE, Gladysheva TB, Luo RS, Wang C, Coggins MB, Pierce JW, Lightcap ES and Chau V: A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc Natl Acad Sci USA. 97:4579–4584. 2000. View Article : Google Scholar : PubMed/NCBI | |
Iso T, Suzuki T, Baird L and Yamamoto M: Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells. Mol Cell Biol. 36:3100–3112. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bennett EJ, Rush J, Gygi SP and Harper JW: Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell. 143:951–965. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Morgan MA and Sun Y: Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal. 21:2383–2400. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang M, Li Y, Zhao Y, He S and Shi J: MiR-33a inhibits cell proliferation and invasion by targeting CAND1 in lung cancer. Clin Transl Oncol. 20:457–466. 2018. View Article : Google Scholar | |
Li L, Wang M, Yu G, Chen P, Li H, Wei D, Zhu J, Xie L, Jia H, Shi J, et al: Overactivated neddylation pathway as a therapeutic target in lung cancer. J Natl Cancer Inst. 106:dju0832014. View Article : Google Scholar : PubMed/NCBI | |
Watson IR, Li BK, Roche O, Blanch A, Ohh M and Irwin MS: Chemotherapy induces NEDP1-mediated destabilization of MDM2. Oncogene. 29:297–304. 2010. View Article : Google Scholar | |
Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, et al: The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun. 5:37332014. View Article : Google Scholar : PubMed/NCBI | |
Mahata B, Sundqvist A and Xirodimas DP: Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner. Oncogene. 31:3060–3071. 2012. View Article : Google Scholar | |
Sundqvist A, Liu G, Mirsaliotis A and Xirodimas DP: Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep. 10:1132–1139. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Bai D, Ma X, Guan J and Zheng X: hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14. Oncogene. 33:246–254. 2014. View Article : Google Scholar | |
Deben C, Deschoolmeester V, Lardon F, Rolfo C and Pauwels P: TP53 and MDM2 genetic alterations in non-small cell lung cancer: Evaluating their prognostic and predictive value. Crit Rev Oncol Hematol. 99:63–73. 2016. View Article : Google Scholar | |
Karin M and Ben-Neriah Y: Phosphorylation meets ubiquitination: The control of NF-[Kappa]B activity. Annu Rev Immunol. 18:621–663. 2000. View Article : Google Scholar | |
Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS, Chau V and Palombella VJ: Nedd8 Modification of Cul-1 Activates SCF(beta(TrCP)-Dependent Ubiquitination of IkappaBalpha. Mol Cell Biol. 20:2326–2333. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Lin L, Zhang Z, Zhang H and Hu H: Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar | |
Zhou L, Jiang Y, Liu X, Li L, Yang X, Dong C, Liu X, Lin Y, Li Y, Yu J, et al: Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene. 38:5792–5804. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Wang H, Bai F, Ding L, Huang Y, Lu C, Chen S, Li C, Yue X, Liang X, et al: IL-6 promotes metastasis of non-small-cell lung cancer by up-regulating TIM-4 via NF-κB. Cell Prolif. 53:e127762020. View Article : Google Scholar | |
Orel L, Neumeier H, Hochrainer K, Binder BR and Schmid JA: Crosstalk between the NF-kappaB activating IKK-complex and the CSN signalosome. J Cell Mol Med. 14:1555–1568. 2010. View Article : Google Scholar | |
Ediriweera MK, Tennekoon KH and Samarakoon SR: Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol. 59:147–160. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chibaya L, Karim B, Zhang H and Jones SN: Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci USA. 118:e20031931182021. View Article : Google Scholar : PubMed/NCBI | |
Xie P, Peng Z, Chen Y, Li H, Du M, Tan Y, Zhang X, Lu Z, Cui CP, Liu CH, et al: Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 31:291–311. 2021. View Article : Google Scholar : | |
Li X, Li C, Guo C, Zhao Q, Cao J, Huang HY, Yue M, Xue Y, Jin Y, Hu L and Ji H: PI3K/Akt/mTOR signaling orchestrates the phenotypic transition and chemo-resistance of small cell lung cancer. J Genet Genomics. 48:640–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Talks K, Pezzella F, Gatter KC and Harris AL: Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic molecular profile of tumours and survival. Br J Cancer. 85:881–890. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Bian Y, Wang Y, Wang Y, Duan X, Han Y, Zhang L, Wang F, Gu Z and Qin Z: HIF-1α is necessary for activation and tumour-promotion effect of cancer-associated fibroblasts in lung cancer. J Cell Mol Med. 25:5457–5469. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wan J and Wu W: Hyperthermia induced HIF-1a expression of lung cancer through AKT and ERK signaling pathways. J Exp Clin Cancer Res. 35:1192016. View Article : Google Scholar : PubMed/NCBI | |
Curtis VF, Ehrentraut SF, Campbell EL, Glover LE, Bayless A, Kelly CJ, Kominsky DJ and Colgan SP: Stabilization of HIF through inhibition of Cullin-2 neddylation is protective in mucosal inflammatory responses. FASEB J. 29:208–215. 2015. View Article : Google Scholar : | |
Russell RC and Ohh M: NEDD8 acts as a 'molecular switch' defining the functional selectivity of VHL. EMBO Rep. 9:486–491. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wolf ER, Mabry AR, Damania B and Mayo LD: Mdm2-mediated neddylation of pVHL blocks the induction of antiangiogenic factors. Oncogene. 39:5228–5239. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hsu PC, Yang CT, Jablons DM and You L: The Crosstalk between Src and Hippo/YAP signaling pathways in non-small cell lung cancer (NSCLC). Cancers (Basel). 12:13612020. View Article : Google Scholar : PubMed/NCBI | |
Zou J, Ma W, Li J, Littlejohn R, Zhou H, Kim IM, Fulton DJR, Chen W, Weintraub NL, Zhou J and Su H: Neddylation mediates ventricular chamber maturation through repression of Hippo signaling. Proc Natl Acad Sci USA. 115:E4101–E4110. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cooper J, Xu Q, Zhou L, Pavlovic M, Ojeda V, Moulick K, de Stanchina E, Poirier JT, Zauderer M, Rudin CM, et al: Combined Inhibition of NEDD8-Activating Enzyme and mTOR Suppresses NF2 Loss-Driven Tumorigenesis. Mol Cancer Ther. 16:1693–1704. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maehama T, Nishio M, Otani J, Mak TW and Suzuki A: The role of Hippo-YAP signaling in squamous cell carcinomas. Cancer Sci. 112:51–60. 2021. View Article : Google Scholar | |
Du Z and Lovly CM: Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 17:582018. View Article : Google Scholar : PubMed/NCBI | |
Shi Q and Chen YG: Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development. Sci China Life Sci. 60:1133–1141. 2017. View Article : Google Scholar : PubMed/NCBI | |
Enchev RI, Schulman BA and Peter M: Protein neddylation: Beyond cullin-RING ligases. Nat Rev Mol Cell Biol. 16:30–44. 2015. View Article : Google Scholar | |
Hamon P, Thoré MGD, Classe M, Signolle N, Liu W, Bawa O, Meziani L, Clémenson C, Milliat F, Deutsch E and Mondini M: TGFβ receptor inhibition unleashes interferon-β production by tumor-associated macrophages and enhances radiotherapy efficacy. J Immunother Cancer. 10:e0035192022. View Article : Google Scholar | |
Zuo W, Huang F, Chiang YJ, Li M, Du J, Ding Y, Zhang T, Lee HW, Jeong LS, Chen Y, et al: c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-β type II receptor. Mol Cell. 49:499–510. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oved S, Mosesson Y, Zwang Y, Santonico E, Shtiegman K, Marmor MD, Kochupurakkal BS, Katz M, Lavi S, Cesareni G and Yarden Y: Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J Biol Chem. 281:21640–21651. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tumbrink HL, Heimsoeth A and Sos ML: The next tier of EGFR resistance mutations in lung cancer. Oncogene. 40:1–11. 2021. View Article : Google Scholar | |
Konduri K, Gallant JN, Chae YK, Giles FJ, Gitlitz BJ, Gowen K, Ichihara E, Owonikoko TK, Peddareddigari V, Ramalingam SS, et al: EGFR fusions as novel therapeutic targets in lung cancer. Cancer Discov. 6:601–611. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Yu G, Lee HW, Li L, Wang L, Yang D, Pan Y, Ding C, Qian J, Wu L, et al: The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res. 72:3360–3371. 2012. View Article : Google Scholar : PubMed/NCBI | |
Invrea F, Punzi S, Petti C, Minelli R, Peoples MD, Bristow CA, Vurchio V, Corrado A, Bragoni A, Marchiò C, et al: Synthetic lethality screening highlights colorectal cancer vulnerability to concomitant blockade of NEDD8 and EGFR pathways. Cancers (Basel). 13:38052021. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Cheng W, Li L, Zhou L, Liang Y, Zhang W, Chen W, Wang S, Zhao H, Chen G, et al: Effective targeting of the ubiquitin-like modifier NEDD8 for lung adenocarcinoma treatment. Cell Biol Toxicol. 36:349–364. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bommelje CC, Weeda VB, Huang G, Shah K, Bains S, Buss E, Shaha M, Gönen M, Ghossein R, Ramanathan SY and Singh B: Oncogenic function of SCCRO5/DCUN1D5 requires its Neddylation E3 activity and nuclear localization. Clin Cancer Res. 20:372–381. 2014. View Article : Google Scholar : | |
Wang L, Zhang M, Pan X, Zhao M, Huang L, Hu X, Wang X, Qiao L, Guo Q, Xu W, et al: Integrative serum metabolic fingerprints based multi-modal platforms for lung adenocarcinoma early detection and pulmonary nodule classification. Adv Sci (Weinh). 9:e22037862022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Yin X, Zhang L, Zhang X, Lin Y, Zhuang L, Liu W, Zhang R, Yan X, Shi L, et al: Defective Fe metal-organic frameworks enhance metabolic profiling for high-accuracy diagnosis of human cancers. Adv Mater. 34:e22014222022. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Dong C, Xu Z, Wang X, Zhang L, Chen S, Chen J and Zhu Y: NEDD8-conjugating enzyme E2 UBE2F confers radiation resistance by protecting lung cancer cells from apoptosis. J Zhejiang Univ Sci B. 22:959–965. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Xu J, Li H, Xu M, Chen ZJ, Wei W, Pan Z and Sun Y: Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to Degrade NOXA via the K11 Linkage. Clin Cancer Res. 23:1104–1116. 2017. View Article : Google Scholar : | |
Guo ZP, Hu YC, Xie Y, Jin F, Song ZQ, Liu XD, Ma T and Zhou PK: MLN4924 suppresses the BRCA1 complex and synergizes with PARP inhibition in NSCLC cells. Biochem Biophys Res Commun. 483:223–229. 2017. View Article : Google Scholar | |
Meng F, Yu W, Chen C, Guo S, Tian X, Miao Y, Ma L, Zhang X, Yu Y, Huang L, et al: A versatile electrochemical biosensor for the detection of circulating MicroRNA toward non-small cell lung cancer diagnosis. Small. 18:e22007842022. View Article : Google Scholar : PubMed/NCBI | |
Zhu HZ, Hou J, Guo Y, Liu X, Jiang FL, Chen GP, Pang XF, Sun JG and Chen ZT: Identification and imaging of miR-155 in the early screening of lung cancer by targeted delivery of octreotide-conjugated chitosan-molecular beacon nanoparticles. Drug Deliv. 25:1974–1983. 2018. View Article : Google Scholar | |
Khalife J, Radomska HS, Santhanam R, Huang X, Neviani P, Saultz J, Wang H, Wu YZ, Alachkar H, Anghelina M, et al: Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia. Leukemia. 29:1981–1992. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ardizzoni A, Boni L, Tiseo M, Fossella FV, Schiller JH, Paesmans M, Radosavljevic D, Paccagnella A, Zatloukal P, Mazzanti P, et al: Cisplatin-versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: An individual patient data meta-analysis. J Natl Cancer Inst. 99:847–857. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Xie X, Wu H, et al: Pulsed electromagnetic therapy in cancer treatment: Progress and outlook. View. 3:202200292022. View Article : Google Scholar | |
Brownell J E, Sintcha k MD, Gavin JM, Liao H, Bruzzese FJ, Bump NJ, Soucy TA, Milhollen MA, Yang X, Burkhardt AL, et al: Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: The NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell. 37:102–111. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lockhart AC, Bauer TM, Aggarwal C, Lee CB, Harvey RD, Cohen RB, Sedarati F, Nip TK, Faessel H, Dash AB, et al: Phase Ib study of pevonedistat, a NEDD8-activating enzyme inhibitor, in combination with docetaxel, carboplatin and paclitaxel, or gemcitabine, in patients with advanced solid tumors. Invest New Drugs. 37:87–97. 2019. View Article : Google Scholar : | |
Sarantopoulos J, Shapiro GI, Cohen RB, Clark JW, Kauh JS, Weiss GJ, Cleary JM, Mahalingam D, Pickard MD, Faessel HM, et al: Phase I study of the investigational NEDD8-Activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with advanced solid tumors. Clin Cancer Res. 22:847–857. 2016. View Article : Google Scholar | |
Yin Y, Xie CM, Li H, Tan M, Chen G, Schiff R, Xiong X and Sun Y: The FBXW2-MSX2-SOX2 axis regulates stem cell property and drug resistance of cancer cells. Proc Natl Acad Sci USA. 116:20528–20538. 2019. View Article : Google Scholar : PubMed/NCBI | |
Norton JP, Augert A, Eastwood E, Basom Rudin CM and MacPherson D: Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas. Genes Dev. 35:870–887. 2021. View Article : Google Scholar : PubMed/NCBI | |
Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, et al: An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 458:732–736. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jia L, Li H and Sun Y: Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression. Neoplasia. 13:561–569. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin JJ, Milhollen MA, Smith PG, Narayanan U and Dutta A: NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res. 70:10310–10320. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Hu T, Liang Y, Li P, Chen X, Zhang J, Ma Y, Hao Q, Wang J, Zhang P, et al: Neddylation inhibition activates the extrinsic apoptosis pathway through ATF4-CHOP-DR5 axis in human esophageal cancer cells. Clin Cancer Res. 22:4145–4157. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jia L, Soengas MS and Sun Y: ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2-M arrest, apoptosis, and senescence. Cancer Res. 69:4974–4982. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rizzardi LF and Cook JG: Flipping the switch from g1 to s phase with e3 ubiquitin ligases. Genes Cancer. 3:634–648. 2012. View Article : Google Scholar | |
Zhao Y, Xiong X, Jia L and Sun Y: Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis. Cell Death Dis. 3:e3862012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang C, Xu T, Pan P, Yu Q, Xu L, Xiong X, Hou T, Cui S and Sun Y: Discovery of a small molecule inhibitor of cullin neddylation that triggers ER stress to induce autophagy. Acta Pharm Sin B. 11:3567–3584. 2021. View Article : Google Scholar : PubMed/NCBI | |
Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yao WT, Wu JF, Yu GY, Wang R, Wang K, Li LH, Chen P, Jiang YN, Cheng H, Lee HW, et al: Suppression of tumor angiogenesis by targeting the protein neddylation pathway. Cell Death Dis. 5:e10592014. View Article : Google Scholar : PubMed/NCBI | |
Tan M, Zhao Y, Kim SJ, Liu M, Jia L, Saunders TL, Zhu Y and Sun Y: SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation. Dev Cell. 21:1062–1076. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tan M, Li H and Sun Y: Endothelial deletion of Sag/Rbx2/Roc2 E3 ubiquitin ligase causes embryonic lethality and blocks tumor angiogenesis. Oncogene. 33:5211–5220. 2014. View Article : Google Scholar : | |
Conway EM, Pikor LA, Kung SH, Hamilton MJ, Lam S, Lam WL and Bennewith KL: Macrophages, inflammation, and lung cancer. Am J Respir Crit Care Med. 193:116–130. 2016. View Article : Google Scholar | |
Deng Q, Zhang J, Gao Y, She X, Wang Y, Wang Y and Ge X: MLN4924 protects against bleomycin-induced pulmonary fibrosis by inhibiting the early inflammatory process. Am J Transl Res. 9:1810–1821. 2017.PubMed/NCBI | |
Zhou L, Zhang W, Sun Y and Jia L: Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal. 44:92–102. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hao R, Song Y, Li R, Wu Y, Yang X, Li X, Qian F, Ye RD and Sun L: MLN4924 protects against interleukin-17A-induced pulmonary inflammation by disrupting ACT1-mediated signaling. Am J Physiol Lung Cell Mol Physiol. 316:L1070–L1080. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng M, Hu S, Wang Z, Pei Y, Fan R, Liu X, Wang L, Zhou J, Zheng S, Zhang T, et al: Inhibition of neddylation regulates dendritic cell functions via Deptor accumulation driven mTOR inactivation. Oncotarget. 7:35643–35654. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mathewson N, Toubai T, Kapeles S, Sun Y, Oravecz-Wilson K, Tamaki H, Wang Y, Hou G, Sun Y and Reddy P: Neddylation plays an important role in the regulation of murine and human dendritic cell function. Blood. 122:2062–2073. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Sun L, Hao R, Jiang H, Qian F and Ye RD: Nedd8 modification of Cullin-5 regulates lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 313:L104–L114. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Liang Y, Li L, Zhou L, Cheng W, Yang X, Yang X, Qi H, Yu J, Jeong LS, et al: Targeting neddylation inhibits intra-vascular survival and extravasation of cancer cells to prevent lung-cancer metastasis. Cell Biol Toxicol. 35:233–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Park JB, Fukuda J, Watanabe M and Chun YS: The effect of neddylation blockade on slug-dependent cancer cell migration is regulated by p53 mutation status. Cancers (Basel). 13:5312021. View Article : Google Scholar : PubMed/NCBI | |
Sun Y and Li H: Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase. Protein Cell. 4:103–116. 2013. View Article : Google Scholar | |
Xu Q, Lin G, Xu H, Hu L, Wang Y, Du S, Deng W, Hu W, Cheng W and Jiang K: MLN4924 neddylation inhibitor promotes cell death in paclitaxel-resistant human lung adenocarcinoma cells. Oncol Lett. 15:515–521. 2018.PubMed/NCBI | |
Zhang Q, Karnak D, Tan M, Lawrence TS, Morgan MA and Sun Y: FBXW7 facilitates nonhomologous End-Joining via K63-Linked Polyubiquitylation of XRCC4. Mol Cell. 61:419–433. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Tan M, Nyati MK, Zhao Y, Wang G and Sun Y: Blockage of neddylation modification stimulates tumor sphere formation in vitro and stem cell differentiation and wound healing in vivo. Proc Natl Acad Sci USA. 113:E2935–2944. 2016. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI | |
Park JB, Seo J, Park JW and Chun YS: Neddylation blockade induces HIF-1α driven cancer cell migration via upregulation of ZEB1. Sci Rep. 10:182102020. View Article : Google Scholar | |
Korrodi-Gregório L, Soto-Cerrato V, Vitorino R, Fardilha M and Pérez-Tomás R: From proteomic analysis to potential therapeutic targets: Functional profile of two lung cancer cell lines, A549 and SW900, widely studied in pre-clinical research. PLoS One. 11:e01659732016. View Article : Google Scholar : PubMed/NCBI | |
Ni S, Chen X, Yu Q, Xu Y, Hu Z, Zhang J, Zhang W, Li B, Yang X, Mao F, et al: Discovery of candesartan cilexetic as a novel neddylation inhibitor for suppressing tumor growth. Eur J Med Chem. 185:1118482020. View Article : Google Scholar | |
Chen X, Yang X, Mao F, Wei J, Xu Y, Li B, Zhu J, Ni S, Jia L and Li J: Development of novel benzimidazole-derived neddylation inhibitors for suppressing tumor growth invitro and invivo. Eur J Med Chem. 210:1129642021. View Article : Google Scholar | |
An H and Statsyuk AV: An inhibitor of ubiquitin conjugation and aggresome formation. Chem Sci. 6:5235–5245. 2015. View Article : Google Scholar : PubMed/NCBI | |
Milhollen MA, Thomas MP, Narayanan U, Traore T, Riceberg J, Amidon BS, Bence NF, Bolen JB, Brownell J, Dick LR, et al: Treatment-emergent mutations in NAEβ confer resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer Cell. 21:388–401. 2012. View Article : Google Scholar : PubMed/NCBI | |
Toth JI, Yang L, Dahl R and Petroski MD: A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Cell Rep. 1:309–316. 2012. View Article : Google Scholar : PubMed/NCBI | |
Verma S, Singh A and Mishra A: Molecular dynamics investigation on the poor sensitivity of A171T mutant NEDD8-activating enzyme (NAE) for MLN4924. J Biomol Struct Dyn. 32:1064–1073. 2014. View Article : Google Scholar | |
Hammill JT, Scott DC, Min J, Connelly MC, Holbrook G, Zhu F, Matheny A, Yang L, Singh B, Schulman BA and Guy RK: Piperidinyl ureas chemically control defective in cullin neddylation 1 (DCN1)-Mediated cullin neddylation. J Med Chem. 61:2680–2693. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hammill JT, Bhasin D, Scott DC, Min J, Chen Y, Lu Y, Yang L, Kim HS, Connelly MC, Hammill C, et al: Discovery of an orally bioavailable inhibitor of defective in cullin neddylation 1 (DCN1)-Mediated cullin neddylation. J Med Chem. 61:2694–2706. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Lu J, Liu L, Bernard D, Yang CY, Fernandez-Salas E, Chinnaswamy K, Layton S, Stuckey J, Yu Q, et al: A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation. Nat Commun. 8:11502017. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Lu J, Chinnaswamy K, Stuckey JA, Liu L, McEachern D, Yang CY, Bernard D, Shen H, Rui L, et al: Selective inhibition of cullin 3 neddylation through covalent targeting DCN1 protects mice from acetaminophen-induced liver toxicity. Nat Commun. 12:26212021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Bao Q, Yang S, Yang M and Mao C: Bionanoparticles in cancer imaging, diagnosis, and treatment. View. 3:202000272022. View Article : Google Scholar | |
Zhang Z, Zhang J, Tian J and Li H: A polydopamine nanomedicine used in photothermal therapy for liver cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1 (RBX1). J Nanobiotechnology. 19:3232021. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI |