1
|
Balta S, Balta I and Mikhailidis DP:
Endocan: A new marker of endothelial function. Curr Opin Cardiol.
36:462–468. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yang J, Yang Q, Yu S and Zhang X: Endocan:
A new marker for cancer and a target for cancer therapy. Biomed
Rep. 3:279–283. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang WE, Hsieh MJ, Lin CW, Kuo CY, Yang
SF, Chuang CY and Chen MK: Plasma levels of endothelial
cell-specific molecule-1 as a potential biomarker of oral cancer
progression. Int J Med Sci. 14:1094–1100. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Maurage CA, Adam E, Minéo JF, Sarrazin S,
Debunne M, Siminski RM, Baroncini M, Lassalle P, Blond S and
Delehedde M: Endocan expression and localization in human
glioblastomas. J Neuropathol Exp Neurol. 68:633–641. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim JH, Park MY, Kim CN, Kim KH, Kang HB,
Kim KD and Kim JW: Expression of endothelial cell-specific
molecule-1 regulated by hypoxia inducible factor-1α in human colon
carcinoma: impact of ESM-1 on prognosis and its correlation with
clinicopathological features. Oncol Rep. 28:1701–1708. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Rocha SF, Schiller M, Jing D, Li H, Butz
S, Vestweber D, Biljes D, Drexler HCA, Nieminen-Kelha M, Vajkoczy
P, et al: Esm1 modulates endothelial tip cell behavior and vascular
permeability by enhancing VEGF bioavailability. Circ Res.
115:581–590. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Spill F, Reynolds DS, Kamm RD and Zaman
MH: Impact of the physical microenvironment on tumor progression
and metastasis. Curr Opin Biotechnol. 40:41–48. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Corriden R and Insel PA: Basal release of
ATP: An autocrine-paracrine mechanism for cell regulation. Sci
Signal. 3:re12010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Di Virgilio F and Adinolfi E:
Extracellular purines, purinergic receptors and tumor growth.
Oncogene. 36:293–303. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kaur J and Dora S: Purinergic signaling:
Diverse effects and therapeutic potential in cancer. Front Oncol.
13:10583712023. View Article : Google Scholar : PubMed/NCBI
|
11
|
de Araújo JB, Kerkhoff VV, de Oliveira
Maciel SFV and de Resende E Silva DT: Targeting the purinergic
pathway in breast cancer and its therapeutic applications.
Purinergic Signal. 17:179–200. 2021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gendron FP, Placet M and Arguin G:
P2Y2 receptor functions in cancer: A perspective in the
context of colorectal cancer. Adv Exp Med Biol. 1051:91–106. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Jin H, Eun SY, Lee JS, Park SW, Lee JH,
Chang KC and Kim HJ: P2Y2 receptor activation by nucleotides
released from highly metastatic breast cancer cells increases tumor
growth and invasion via crosstalk with endothelial cells. Breast
Cancer Res. 16:R772014. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Dent R, Trudeau M, Pritchard KI, Hanna WM,
Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod SA:
Triple-negative breast cancer: Clinical features and patterns of
recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kumar P and Aggarwal R: An overview of
triple-negative breast cancer. Arch Gynecol Obstet. 293:247–269.
2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang H, Luo H, Jiang Z, Yue J, Hou Q, Xie
R and Wu S: Fractionated irradiation-induced EMT-like phenotype
conferred radioresistance in esophageal squamous cell carcinoma. J
Radiat Res. 57:370–380. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ko YS, Jin H, Lee JS, Park SW, Chang KC,
Kang KM, Jeong BK and Kim HJ: Radioresistant breast cancer cells
exhibit increased resistance to chemotherapy and enhanced invasive
properties due to cancer stem cells. Oncol Rep. 40:3752–3762.
2018.PubMed/NCBI
|
18
|
Jin H, Rugira T, Ko YS, Park SW, Yun SP
and Kim HJ: ESM-1 Overexpression is involved in increased
tumorigenesis of radiotherapy-resistant breast cancer cells.
Cancers (Basel). 12:13632020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jin H and Kim HJ: P2Y2R-mediated PAK1
activation is involved in ESM-1 overexpression in RT-R-MDA-MB-231
through FoxO1 regulation. Cancers (Basel). 14:41242022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Seye CI, Yu N, Gonzalez FA, Erb L and
Weisman GA: The P2Y2 nucleotide receptor mediates vascular cell
adhesion molecule-1 expression through interaction with VEGF
receptor-2 (KDR/Flk-1). J Biol Chem. 279:35679–35686. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Liao Z, Cao C, Wang J, Huxley VH, Baker O,
Weisman GA and Erb L: The P2Y2 receptor interacts with VE-cadherin
and VEGF receptor-2 to regulate Rac1 activity in endothelial cells.
J Biomed Sci Eng. 7:1105–1121. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Abid MR, Yi X, Yano K, Shih SC and Aird
WC: Vascular endocan is preferentially expressed in tumor
endothelium. Microvasc Res. 72:136–145. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jin H, Lee JS, Kim DC, Ko YS, Lee GW and
Kim HJ: Increased extracellular adenosine in radiotherapy-resistant
breast cancer cells enhances tumor progression through
A2AR-Akt-β-catenin signaling. Cancers. 13:21052021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sham D, Wesley UV, Hristova M and van der
Vliet A: ATP-mediated transactivation of the epidermal growth
factor receptor in airway epithelial cells involves DUOX1-dependent
oxidation of Src and ADAM17. PLoS One. 8:e543912013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ryden L, Linderholm B, Nielsen NH, Emdin
S, Jönsson PE and Landberg G: Tumor specific VEGF-A and VEGFR2/KDR
protein are co-expressed in breast cancer. Breast Cancer Res Treat.
82:147–154. 2023. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhao D, Pan C, Sun J, Gilbert C,
Drews-Elger K, Azzam DJ, Picon-Ruiz M, Kim M, Ullmer W, El-Ashry D,
et al: VEGF drives cancer-initiating stem cells through
VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene.
34:3107–3119. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gurdal H, Tuglu MM, Bostanabad SY and
Dalkiliç B: Partial agonistic effect of cetuximab on epidermal
growth factor receptor and Src kinase activation in triple-negative
breast cancer cell lines. Int J Oncol. 54:1345–1356.
2019.PubMed/NCBI
|
28
|
Kolářová I, Melichar B, Vaňásek J, Sirák
I, Petera J, Horáčková K, Pohanková D, Šinkorová Z, Hošek O and
Vošmik M: Special techniques of adjuvant breast carcinoma
radiotherapy. Cancers (Basel). 15:2982022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Haussmann J, Corradini S, Nestle-Kraemling
C, Bölke E, Njanang FJD, Tamaskovics B, Orth K, Ruckhaeberle E,
Fehm T, Mohrmann S, et al: Recent advances in radiotherapy of
breast cancer. Radiat Oncol. 15:712020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Carlson RW and McCormick B: Update: NCCN
breast cancer clinical practice guidelines. J Natl Compr Canc Netw.
3 (Suppl 1):S7–S11. 2005.PubMed/NCBI
|
31
|
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY,
Kim CH, Park HG, Han SI and Kang HS: Induction of metastasis,
cancer stem cell phenotype, and oncogenic metabolism in cancer
cells by ionizing radiation. Mol Cancer. 16:102017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gilreath C, Boerma M, Qin Z, Hudson MK and
Wang S: The hypoxic microenvironment of breast cancer cells
promotes resistance in radiation therapy. Front Oncol.
10:6294222021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Joo YN, Jin H, Eun SY, Park SW, Chang KC
and Kim HJ: P2Y2R activation by nucleotides released from the
highly metastatic breast cancer cell MDA-MB-231 contributes to
pre-metastatic niche formation by mediating lysyl oxidase
secretion, collagen crosslinking, and monocyte recruitment.
Oncotarget. 5:9322–9334. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jin H, Ko YS and Kim HJ: P2Y2R-mediated
inflammasome activation is involved in tumor progression in breast
cancer cells and in radiotherapy-resistant breast cancer. Int J
Oncol. 53:1953–1966. 2018.PubMed/NCBI
|
35
|
Roudnicky F, Poyet C, Wild P, Krampitz S,
Negrini F, Huggenberger R, Rogler A, Stöhr R, Hartmann A,
Provenzano M, et al: Endocan is upregulated on tumor vessels in
invasive bladder cancer where it mediates VEGF-A-induced
angiogenesis. Cancer Res. 73:1097–1106. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang Y and Brekken RA: Direct and
indirect regulation of the tumor immune microenvironment by VEGF. J
Leukoc Biol. 111:1269–1286. 2022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Simons M, Gordon E and Claesson-Welsh L:
Mechanisms and regulation of endothelial VEGF receptor signalling.
Nat Rev Mol Cell Biol. 17:611–625. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Papadopoulos N, Martin J, Ruan Q, Rafique
A, Rosconi MP, Shi E, Pyles EA, Yancopoulos GD, Stahl N and Wiegand
SJ: Binding and neutralization of vascular endothelial growth
factor (VEGF) and related ligands by VEGF Trap, ranibizumab and
bevacizumab. Angiogenesis. 15:171–185. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Claesson-Welsh L and Welsh M: VEGFA and
tumour angiogenesis. J Intern Med. 273:114–127. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Holmes K, Roberts OL, Thomas AM and Cross
MJ: Vascular endothelial growth factor receptor-2: structure,
function, intracellular signalling and therapeutic inhibition. Cell
Signal. 19:2003–2012. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rini BI and Rathmell WK: Biological
aspects and binding strategies of vascular endothelial growth
factor in renal cell carcinoma. Clin Cancer Res. 13:741s–746s.
2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Norambuena A, Palma F, Poblete MI, Donoso
MV, Pardo E, Gonzalez A and Huidobro-Toro JP: UTP controls cell
surface distribution and vasomotor activity of the human P2Y2
receptor through an epidermal growth factor receptor-transregulated
mechanism. J Biol Chem. 285:2940–2950. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ratchford AM, Baker OJ, Camden JM, Rikka
S, Petris MJ, Seye CI, Erb L and Weisman GA: P2Y2 nucleotide
receptors mediate metalloprotease-dependent phosphorylation of
epidermal growth factor receptor and ErbB3 in human salivary gland
cells. J Biol Chem. 285:7545–7555. 2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Liu J, Liao Z, Camden J, Griffin KD,
Garrad RC, Santiago-Pérez LI, González FA, Seye CI, Weisman GA and
Erb L: Src homology 3 binding sites in the P2Y2 nucleotide receptor
interact with Src and regulate activities of Src, proline-rich
tyrosine kinase 2, and growth factor receptors. J Biol Chem.
279:8212–8218. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Li WH, Qiu Y, Zhang HQ, Tian XX and Fang
WG: P2Y2 receptor and EGFR cooperate to promote prostate cancer
cell invasion via ERK1/2 pathway. PLoS One. 10:e01331652015.
View Article : Google Scholar : PubMed/NCBI
|