1
|
Smyth EC, Nilsson M, Grabsch HI, van
Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648.
2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Plummer M, Franceschi S, Vignat J, Forman
D and de Martel C: Global burden of gastric cancer attributable to
Helicobacter pylori. Int J Cancer. 136:487–490. 2015. View Article : Google Scholar
|
3
|
Wen S and Moss SF: Helicobacter pylori
virulence factors in gastric carcinogenesis. Cancer Lett. 282:1–8.
2009. View Article : Google Scholar :
|
4
|
Nejati S, Karkhah A, Darvish H, Validi M,
Ebrahimpour S and Nouri HR: Influence of Helicobacter pylori
virulence factors CagA and VacA on pathogenesis of gastrointestinal
disorders. Microb Pathog. 117:43–48. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Javed S, Skoog EC and Solnick JV: Impact
of Helicobacter pylori virulence factors on the host immune
response and gastric pathology. Curr Top Microbiol Immunol.
421:21–52. 2019.PubMed/NCBI
|
6
|
Takahashi-Kanemitsu A, Knight CT and
Hatakeyama M: Molecular anatomy and pathogenic actions of
Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell
Mol Immunol. 17:50–63. 2020. View Article : Google Scholar :
|
7
|
Gao S, Song D, Liu Y, Yan H and Chen X:
Helicobacter pylori CagA PROTEIN ATTENUates 5-Fu sensitivity of
gastric cancer cells through upregulating cellular glucose
metabolism. Onco Targets Ther. 13:6339–6349. 2020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lujambio A and Lowe SW: The microcosmos of
cancer. Nature. 482:347–355. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Dastmalchi N, Safaralizadeh R and Banan
Khojasteh SM: The correlation between microRNAs and Helicobacter
pylori in gastric cancer. Pathog Dis. 77:ftz0392019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Parizadeh SM, Jafarzadeh-Esfehani R, Avan
A, Ghandehari M, Goldani F and Parizadeh SM: The prognostic and
predictive value of microRNAs in patients with H. pylori-positive
gastric cancer. Curr Pharm Des. 24:4639–4645. 2018. View Article : Google Scholar
|
12
|
Zou D, Xu L, Li H, Ma Y, Gong Y, Guo T,
Jing Z, Xu X and Zhang Y: Role of abnormal microRNA expression in
Helicobacter pylori associated gastric cancer. Crit Rev Microbiol.
45:239–251. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Blosse A, Levy M, Robe C, Staedel C,
Copie-Bergman C and Lehours P: Deregulation of miRNA in
Helicobacter pylori-induced gastric MALT lymphoma: From mice to
human. J Clin Med. 8:8452019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Korać P, Antica M and Matulić M: MiR-7 in
cancer development. Biomedicines. 9:3252021. View Article : Google Scholar
|
15
|
Xiao H: MiR-7-5p suppresses tumor
metastasis of non-small cell lung cancer by targeting NOVA2. Cell
Mol Biol Lett. 24:602019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xia J, Cao T, Ma C, Shi Y, Sun Y, Wang ZP
and Ma J: miR-7 suppresses tumor progression by directly targeting
MAP3K9 in pancreatic cancer. Mol Ther Nucleic Acids. 13:121–132.
2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li M, Pan M, Wang J, You C, Zhao F, Zheng
D, Guo M, Xu H, Wu D, Wang L and Dou J: miR-7 reduces breast cancer
stem cell metastasis via inhibiting RELA to decrease ESAM
expression. Mol Ther Oncolytics. 18:70–82. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kong D, Piao YS, Yamashita S, Oshima H,
Oguma K, Fushida S, Fujimura T, Minamoto T, Seno H, Yamada Y, et
al: Inflammation-induced repression of tumor suppressor miR-7 in
gastric tumor cells. Oncogene. 31:3949–3960. 2012. View Article : Google Scholar
|
19
|
Lin J, Liu Z, Liao S, Li E, Wu X and Zeng
W: Elevated microRNA-7 inhibits proliferation and tumor
angiogenesis and promotes apoptosis of gastric cancer cells via
repression of Raf-1. Cell Cycle. 19:2496–2508. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xu N, Lian YJ, Dai X and Wang YJ: miR-7
increases cisplatin sensitivity of gastric cancer cells through
suppressing mTOR. Technol Cancer Res Treat. 16:1022–1030. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Xie J, Chen M, Zhou J, Mo MS, Zhu LH, Liu
YP, Gui QJ, Zhang L and Li GQ: miR-7 inhibits the invasion and
metastasis of gastric cancer cells by suppressing epidermal growth
factor receptor expression. Oncol Rep. 31:1715–1722. 2014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhao X, Dou W, He L, Liang S, Tie J, Liu
C, Li T, Lu Y, Mo P, Shi Y, et al: MicroRNA-7 functions as an
anti-metastatic microRNA in gastric cancer by targeting
insulin-like growth factor-1 receptor. Oncogene. 32:1363–1372.
2013. View Article : Google Scholar
|
23
|
Zhao XD, Lu YY, Guo H, Xie HH, He LJ, Shen
GF, Zhou JF, Li T, Hu SJ, Zhou L, et al: MicroRNA-7/NF-κB signaling
regulatory feedback circuit regulates gastric carcinogenesis. J
Cell Biol. 210:613–627. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ye T, Yang M, Huang D, Wang X, Xue B, Tian
N, Xu X, Bao L, Hu H, Lv T and Huang Y: MicroRNA-7 as a potential
therapeutic target for aberrant NF-κB-driven distant metastasis of
gastric cancer. J Exp Clin Cancer Res. 38:552019. View Article : Google Scholar
|
25
|
Wang L, Lv X, Fu X, Su L, Yang T and Xu P:
MiR-153 inhibits the resistance of lung cancer to gefitinib via
modulating expression of ABCE1. Cancer Biomark. 25:361–369. 2019.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Shi D, Li Y, Fan L, Zhao Q, Tan B and Cui
G: Upregulation of miR-153 inhibits triple-negative breast cancer
progression by targeting ZEB2-mediated EMT and contributes to
better prognosis. Onco Targets Ther. 12:9611–9625. 2019. View Article : Google Scholar
|
27
|
Li C, Zhang Y, Zhao W, Cui S and Song Y:
miR-153-3p regulates progression of ovarian carcinoma in vitro and
in vivo by targeting MCL1 gene. J Cell Biochem. 120:19147–19158.
2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang W, Mao S, Shi D, Zhang J, Zhang Z,
Guo Y, Wu Y, Wang R, Wang L, Huang Y and Yao X: MicroRNA-153
decreases tryptophan catabolism and inhibits angiogenesis in
bladder cancer by targeting indoleamine 2,3-dioxygenase 1. Front
Oncol. 9:6192019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bi CW, Zhang GY, Bai Y, Zhao B and Yang H:
Increased expression of miR-153 predicts poor prognosis for
patients with prostate cancer. Medicine (Baltimore). 98:e167052019.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang L, Pickard K, Jenei V, Bullock MD,
Bruce A, Mitter R, Kelly G, Paraskeva C, Strefford J, Primrose J,
et al: miR-153 supports colorectal cancer progression via
pleiotropic effects that enhance invasion and chemotherapeutic
resistance. Cancer Res. 73:6435–6447. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ouyang Y, Yuan W and Qiu S: MicroRNA-153
functions as a tumor suppressor in gastric cancer via targeting
Kruppel-like factor 5. Exp Ther Med. 16:473–482. 2018.PubMed/NCBI
|
32
|
Guo Y, Zhang T, Shi Y, Zhang J, Li M, Lu
F, Zhang J, Chen X and Ding S: Helicobacter pylori inhibits GKN1
expression via the CagA/p-ERK/AUF1 pathway. Helicobacter.
25:e126652020. View Article : Google Scholar
|
33
|
Liu JF, Guo D, Kang EM, Wang YS, Gao XZ,
Cong HY, Liu P, Zhang NQ and Wang MY: Acute and chronic infection
of H. pylori caused the difference in apoptosis of gastric
epithelial cells. Microb Pathog. 150:1047172021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
35
|
Hayashi Y, Tsujii M, Wang J, Kondo J,
Akasaka T, Jin Y, Li W, Nakamura T, Nishida T, Iijima H, et al:
CagA mediates epigenetic regulation to attenuate let-7 expression
in Helicobacter pylori-related carcinogenesis. Gut. 62:1536–1546.
2013. View Article : Google Scholar
|
36
|
Yuan J, Li Y, Liao J, Liu M, Zhu L and
Liao K: MicroRNA-7 inhibits hepatocellular carcinoma cell invasion
and metastasis by regulating Atg5-mediated autophagy. Transl Cancer
Res. 9:3965–3972. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hou S, Guo M, Xi H, Zhang L, Zhao A, Hou H
and Fang W: MicroRNA-153-3p sensitizes melanoma cells to
dacarbazine by suppressing ATG5-mediated autophagy and apoptosis.
Transl Cancer Res. 9:5626–5636. 2020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ren HY, Wen LS, Geng YH, Huang JB, Liu JF,
Shen DY and Meng JR: Association between IL-1B gene polymorphisms
and Helicobacter pylori infection: A meta-analysis. Microb Pathog.
137:1037692019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang F, Meng W, Wang B and Qiao L:
Helicobacter pylori-induced gastric inflammation and gastric
cancer. Cancer Lett. 345:196–202. 2014. View Article : Google Scholar
|
40
|
Han T, Jing X, Bao J, Zhao L, Zhang A,
Miao R, Guo H, Zhou B, Zhang S, Sun J and Shi J: H. pylori
infection alters repair of DNA double-strand breaks via SNHG17. J
Clin Invest. 130:3901–3918. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
So JBY, Kapoor R, Zhu F, Koh C, Zhou L,
Zou R, Tang YC, Goo PCK, Rha SY, Chung HC, et al: Development and
validation of a serum microRNA biomarker panel for detecting
gastric cancer in a high-risk population. Gut. 70:829–837. 2021.
View Article : Google Scholar
|
42
|
Liu Y, Zhu J, Ma X, Han S, Xiao D, Jia Y
and Wang Y: ceRNA network construction and comparison of gastric
cancer with or without Helicobacter pylori infection. J Cell
Physiol. 234:7128–7140. 2019. View Article : Google Scholar
|
43
|
Zhang Z, Chen S, Fan M, Ruan G, Xi T,
Zheng L, Guo L, Ye F and Xing Y: Helicobacter pylori induces
gastric cancer via down-regulating miR-375 to inhibit dendritic
cell maturation. Helicobacter. 26:e128132021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Miao L, Liu K, Xie M, Xing Y and Xi T:
miR-375 inhibits Helicobacter pylori-induced gastric carcinogenesis
by blocking JAK2-STAT3 signaling. Cancer Immunol Immunother.
63:699–711. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ni H, Qin H, Sun C, Liu Y, Ruan G, Guo Q,
Xi T, Xing Y and Zheng L: MiR-375 reduces the stemness of gastric
cancer cells through triggering ferroptosis. Stem Cell Res Ther.
12:3252021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lee JW, Kim N, Park JH, Kim HJ, Chang H,
Kim JM, Kim JW and Lee DH: Differential MicroRNA expression between
gastric cancer tissue and non-cancerous gastric mucosa according to
Helicobacter pylori status. J Cancer Prev. 22:33–39. 2017.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Hong T, Ding J and Li W: miR-7 reverses
breast cancer resistance to chemotherapy by targeting MRP1 And
BCL2. Onco Targets Ther. 12:11097–11105. 2019. View Article : Google Scholar
|
48
|
Xiong S, Zheng Y, Jiang P, Liu R, Liu X
and Chu Y: MicroRNA-7 inhibits the growth of human non-small cell
lung cancer A549 cells through targeting BCL-2. Int J Biol Sci.
7:805–814. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Sun D, Mu Y and Piao H: MicroRNA-153-3p
enhances cell radiosensitivity by targeting BCL2 in human glioma.
Biol Res. 51:562018. View Article : Google Scholar : PubMed/NCBI
|
50
|
He Y, Zhang L, Tan F, Wang LF, Liu DH,
Wang RJ and Yin XZ: MiR-153-5p promotes sensibility of colorectal
cancer cells to oxaliplatin via targeting Bcl-2-mediated autophagy
pathway. Biosci Biotechnol Biochem. 84:1645–1651. 2020. View Article : Google Scholar : PubMed/NCBI
|
51
|
Li YL, Tang JM, Chen XY, Luo B, Liang GH,
Qu Q and Lu ZY: MicroRNA-153-3p enhances the sensitivity of chronic
myeloid leukemia cells to imatinib by inhibiting B-cell
lymphoma-2-mediated autophagy. Hum Cell. 33:610–618. 2020.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Guo G, Li L, Song G, Wang J, Yan Y and
Zhao Y: miR-7/SP1/TP53BP1 axis may play a pivotal role in NSCLC
radiosensitivity. Oncol Rep. 44:2678–2690. 2020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Lin CL, Ying TH, Yang SF, Wang SW, Cheng
SP, Lee JJ and Hsieh YH: Transcriptional suppression of miR-7 by
MTA2 induces Sp1-mediated KLK10 expression and metastasis of
cervical cancer. Mol Ther Nucleic Acids. 20:699–710. 2020.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Wang MJ, Pei DS, Qian GW, Yin XX, Cheng Q,
Li LT, Li HZ and Zheng JN: p53 regulates Ki-67 promoter activity
through p53- and Sp1-dependent manner in HeLa cells. Tumour Biol.
32:905–912. 2011. View Article : Google Scholar : PubMed/NCBI
|
55
|
Drayman N, Ben-Nun-Shaul O, Butin-Israeli
V, Srivastava R, Rubinstein AM, Mock CS, Elyada E, Ben-Neriah Y,
Lahav G and Oppenheim A: p53 elevation in human cells halt SV40
infection by inhibiting T-ag expression. Oncotarget. 7:52643–52660.
2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Li H, Zhang Y, Ströse A, Tedesco D, Gurova
K and Selivanova G: Integrated high-throughput analysis identifies
Sp1 as a crucial determinant of p53-mediated apoptosis. Cell Death
Differ. 21:1493–1502. 2014. View Article : Google Scholar : PubMed/NCBI
|
57
|
Balkwill F and Mantovani A: Inflammation
and cancer: Back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI
|
58
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
59
|
El-Omar EM, Carrington M, Chow WH, McColl
KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N,
et al: Interleukin-1 polymorphisms associated with increased risk
of gastric cancer. Nature. 404:398–402. 2000. View Article : Google Scholar : PubMed/NCBI
|
60
|
Kawahara T, Kuwano Y, Teshima-Kondo S,
Kawai T, Nikawa T, Kishi K and Rokutan K: Toll-like receptor 4
regulates gastric pit cell responses to Helicobacter pylori
infection. J Med Invest. 48:190–197. 2001.PubMed/NCBI
|
61
|
Kawahara T, Teshima S, Oka A, Sugiyama T,
Kishi K and Rokutan K: Type I Helicobacter pylori
lipopolysaccharide stimulates toll-like receptor 4 and activates
mitogen oxidase 1 in gastric pit cells. Infect Immun. 69:4382–4389.
2001. View Article : Google Scholar : PubMed/NCBI
|
62
|
Noto JM, Khizanishvili T, Chaturvedi R,
Piazuelo MB, Romero-Gallo J, Delgado AG, Khurana SS, Sierra JC,
Krishna US, Suarez G, et al: Helicobacter pylori promotes the
expression of Krüppel-like factor 5, a mediator of carcinogenesis,
in vitro and in vivo. PLoS One. 8:e543442013. View Article : Google Scholar
|
63
|
Xie Z, Jie Z, Wang G, Sun X, Tang P, Chen
S, Qin A, Wang J and Fan S: TGF-β synergizes with ML264 to block
IL-1β-induced matrix degradation mediated by Krüppel-like factor 5
in the nucleus pulposus. Biochim Biophys Acta Mol Basis Dis.
1864:579–589. 2018. View Article : Google Scholar
|
64
|
Tang J, Xu L, Zeng Y and Gong F: Effect of
gut microbiota on LPS-induced acute lung injury by regulating the
TLR4/NF-kB signaling pathway. Int Immunopharmacol. 91:1072722021.
View Article : Google Scholar
|
65
|
Zhang XD, Fan QY, Qiu Z and Chen S: MiR-7
alleviates secondary inflammatory response of microglia caused by
cerebral hemorrhage through inhibiting TLR4 expression. Eur Rev Med
Pharmacol Sci. 22:5597–5604. 2018.PubMed/NCBI
|
66
|
Yu L, Xu Q, Yu W, Duan J and Dai G: LncRNA
cancer susceptibility candidate 15 accelerates the breast cancer
cells progression via miR-153-3p/KLF5 positive feedback loop.
Biochem Biophys Res Commun. 506:819–825. 2018. View Article : Google Scholar : PubMed/NCBI
|