1
|
Cloughesy TF, Cavenee WK and Mischel PS:
Glioblastoma: From molecular pathology to targeted treatment. Annu
Rev Pathol. 9:1–25. 2014. View Article : Google Scholar
|
2
|
Westphal M and Lamszus K: The neurobiology
of gliomas: From cell biology to the development of therapeutic
approaches. Nat Rev Neurosci. 12:495–508. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Aldape K, Brindle KM, Chesler L, Chopra R,
Gajjar A, Gilbert MR, Gottardo N, Gutmann DH, Hargrave D, Holland
EC, et al: Challenges to curing primary brain tumours. Nat Rev Clin
Oncol. 16:509–520. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Prager BC, Xie Q, Bao S and Rich JN:
Cancer stem cells: The architects of the tumor ecosystem. Cell Stem
Cell. 24:41–53. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Saygin C, Matei D, Majeti R, Reizes O and
Lathia JD: Targeting cancer stemness in the clinic: From Hype to
Hope. Cell Stem Cell. 24:25–40. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang XX, Prager BC, Wu QL, Kim LJY, Gimple
RC, Shi Y, Yang KL, Morton AR, Zhou WC, Zhu Z, et al: Reciprocal
signaling between glioblastoma stem cells and differentiated tumor
cells promotes malignant progression. Cell Stem Cell.
22:514–528.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hu B, Wang Q, Wang YA, Hua S, Sauve CG,
Ong D, Lan ZD, Chang Q, Ho YW, Monasterio MM, et al: Epigenetic
activation of WNT5A drives glioblastoma stem cell differentiation
and invasive growth. Cell. 167:1281–1295.e18. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang P, Wan W, Xiong S, Wang J, Zou D, Lan
C, Yu S, Liao B, Feng H and Wu N: HIF1α regulates glioma
chemosensitivity through the transformation between differentiation
and dedifferentiation in various oxygen levels. Sci Rep.
7:79652017. View Article : Google Scholar
|
10
|
Wang P, Lan C, Xiong S, Zhao X, Shan Y, Hu
R, Wan W, Yu S, Liao B, Li G, et al: HIF1α regulates single
differentiated glioma cell dedifferentiation to stem-like cell
phenotypes with high tumorigenic potential under hypoxia.
Oncotarget. 8:28074–28092. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lee G, Auffinger B, Guo D, Hasan T,
Deheeger M, Tobias AL, Kim JY, Atashi F, Zhang L, Lesniak MS, et
al: Dedifferentiation of glioma cells to glioma stem-like cells by
therapeutic Stress-induced HIF signaling in the recurrent GBM
model. Mol Cancer Ther. 15:3064–3076. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Safa AR, Saadatzadeh MR, Cohen-Gadol AA,
Pollok KE and Bijangi-Vishehsaraei K: Glioblastoma stem cells
(GSCs) epigenetic plasticity and interconversion between
differentiated non-GSCs and GSCs. Genes Dis. 2:152–163. 2015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Biserova K, Jakovlevs A, Uljanovs R and
Strumfa I: Cancer Stem Cells: Significance in origin, pathogenesis
and treatment of glioblastoma. Cells. 10:6212021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lathia JD, Mack SC, Mulkearns-Hubert EE,
Valentim CL and Rich JN: Cancer stem cells in glioblastoma. Genes
Dev. 29:1203–1217. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Suva ML, Rheinbay E, Gillespie SM, Patel
AP, Wakimoto H, Rabkin SD, Riggi N, Chi AS, Cahill DP, Nahed BV, et
al: Reconstructing and reprogramming the tumor-propagating
potential of glioblastoma stem-like cells. Cell. 157:580–594. 2014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Sancho-Martinez I, Nivet E, Xia Y, Hishida
T, Aguirre A, Ocampo A, Ma L, Morey R, Krause MN, Zembrzycki A, et
al: Establishment of human iPSC-based models for the study and
targeting of glioma initiating cells. Nat Commun. 7:107432016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Llaguno SRA and Parada LF: Cell of origin
of glioma: Biological and clinical implications. Brit J Cancer.
115:1445–1450. 2016. View Article : Google Scholar
|
18
|
Duan S, Yuan G, Liu X, Ren R, Li J, Zhang
W, Wu J, Xu X, Fu L, Li Y, et al: PTEN deficiency reprogrammes
human neural stem cells towards a glioblastoma stem cell-like
phenotype. Nat Commun. 6:100682015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Louis DN: Molecular pathology of malignant
gliomas. Annu Rev Pathol. 1:97–117. 2006. View Article : Google Scholar
|
20
|
Funato K, Major T, Lewis PW, Allis CD and
Tabar V: Use of human embryonic stem cells to model pediatric
gliomas with H3.3K27M histone mutation. Science. 346:1529–1533.
2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D
and Chen J: The challenges and the promise of molecular targeted
therapy in malignant gliomas. Neoplasia. 17:239–255. 2015.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Jones DTW, Gronych J, Lichter P, Witt O
and Pfister SM: MAPK pathway activation in pilocytic astrocytoma.
Cell Mol Life Sci. 69:1799–1811. 2012. View Article : Google Scholar :
|
23
|
Smith RC and Tabar V: Constructing and
deconstructing cancers using human pluripotent stem cells and
organoids. Cell Stem Cell. 24:12–24. 2019. View Article : Google Scholar :
|
24
|
Shi Y, Inoue H, Wu JC and Yamanaka S:
Induced pluripotent stem cell technology: A decade of progress. Nat
Rev Drug Discov. 16:115–130. 2017. View Article : Google Scholar
|
25
|
Tao Y and Zhang SC: Neural subtype
specification from human pluripotent stem cells. Cell Stem Cell.
19:573–586. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ying QL, Wray J, Nichols J, Batlle-Morera
L, Doble B, Woodgett J, Cohen P and Smith A: The ground state of
embryonic stem cell self-renewal. Nature. 453:519–523. 2008.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Lederer CW and Santama N: Neural stem
cells: Mechanisms of fate specification and nuclear reprogramming
in regenerative medicine. Biotechnol J. 3:1521–1538. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Mungenast AE, Siegert S and Tsai LH:
Modeling Alzheimer's disease with human induced pluripotent stem
(iPS) cells. Mol Cell Neurosci. 73:13–31. 2016. View Article : Google Scholar
|
29
|
Okano H and Yamanaka S: iPS cell
technologies: Significance and applications to CNS regeneration and
disease. Mol Brain. 7:222014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Marin Navarro A, Pronk RJ, van der Geest
AT, Oliynyk G, Nordgren A, Arsenian-Henriksson M, Falk A and
Wilhelm M: p53 controls genomic stability and temporal
differentiation of human neural stem cells and affects neural
organization in human brain organoids. Cell Death Dis. 11:522020.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Modrek AS, Golub D, Khan T, Bready D,
Prado J, Bowman C, Deng J, Zhang G, Rocha PP, Raviram R, et al:
Low-grade astrocytoma mutations in IDH1, P53 and ATRX cooperate to
block differentiation of human neural stem cells via repression of
SOX2. Cell Rep. 21:1267–1280. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Uhrbom L, Dai CK, Celestino JC, Rosenblum
MK, Fuller GN and Holland EC: Ink4a-Arf loss cooperates with KRas
activation in astrocytes and neural progenitors to generate
glioblastomas of various morphologies depending on activated Akt.
Cancer Res. 62:5551–5558. 2002.PubMed/NCBI
|
33
|
Bian S, Repic M, Guo ZM, Kavirayani A,
Burkard T, Bagley JA, Krauditsch C and Knoblich JA: Genetically
engineered cerebral organoids model brain tumor formation. Nat
Methods. 15:631–639. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu JL, Wang LL, Su ZH, Wu W, Cai XJ, Li
D, Hou JD, Pei DQ and Pan GJ: A reciprocal antagonism between
miR-376c and TGF-beta signaling regulates neural differentiation of
human pluripotent stem cells. FASEB J. 28:4642–4656. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Moody J: Feeder-independent culture
systems for human pluripotent stem cells. Methods Mol Biol.
946:507–521. 2013. View Article : Google Scholar
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
37
|
Xing F, Luan Y, Cai J, Wu S, Mai J, Gu J,
Zhang H, Li K, Lin Y, Xiao X, et al: The Anti-warburg effect
elicited by the cAMP-PGC1α pathway drives differentiation of
glioblastoma cells into astrocytes. Cell Rep. 23:2832–2833. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Chuan Qin QK, Li Q, Wei Q, Gao H, Zhu D,
Pang W, Sun D, Liu E, Li X and Rong R: Laboratory animal-Guidelines
for euthanasia. China, M. o. S. a. T. o. t. P. s. R. o: Ministry of
Science and Technology of the People's Republic of China, National
standard; 2021
|
39
|
Guide for the Care and Use of Laboratory
Animals. Washington, (DC): 2011
|
40
|
Lancaster MA and Knoblich JA: Generation
of cerebral organoids from human pluripotent stem cells. Nat
Protoc. 9:2329–2340. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Brescia P, Ortensi B, Fornasari L, Levi D,
Broggi G and Pelicci G: CD133 is essential for glioblastoma stem
cell maintenance. Stem Cells. 31:857–869. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ludwig K and Kornblum HI: Molecular
markers in glioma. J Neurooncol. 134:505–512. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Koppenol WH, Bounds PL and Dang CV: Otto
Warburg's contributions to current concepts of cancer metabolism.
Nat Rev Cancer. 11:325–337. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Qian X, Nguyen HN, Jacob F, Song H and
Ming GL: Using brain organoids to understand Zika virus-induced
microcephaly. Development. 144:952–957. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen HI, Song H and Ming GL: Applications
of human brain organoids to clinical problems. Dev Dyn. 248:53–64.
2019. View Article : Google Scholar :
|
46
|
Krieger TG, Tirier SM, Park J, Jechow K,
Eisemann T, Peterziel H, Angel P, Eils R and Conrad C: Modeling
glioblastoma invasion using human brain organoids and single-cell
transcriptomics. Neuro Oncol. 22:1138–1149. 2020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Azzarelli R, Ori M, Philpott A and Simons
BD: Three-dimensional model of glioblastoma by co-culturing tumor
stem cells with human brain organoids. Biol Open. 10:bio0564162021.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Alcantara Llaguno S, Sun D, Pedraza AM,
Vera E, Wang Z, Burns DK and Parada LF: Cell-of-origin
susceptibility to glioblastoma formation declines with neural
lineage restriction. Nat Neurosci. 22:545–555. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Li GL, Xie BB, He LW, Zhou TC, Gao GJ, Liu
SX, Pan GJ, Ge J, Peng FH and Zhong XF: Generation of retinal
organoids with mature rods and cones from urine-derived human
induced pluripotent stem cells. Stem Cells Int. 2018:49686582018.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Su ZH, Zhang YQ, Liao BJ, Zhong XF, Chen
X, Wang HT, Guo YP, Shan YL, Wang LH and Pan GJ: Antagonism between
the transcription factors NANOG and OTX2 specifies rostral or
caudal cell fate during neural patterning transition. J Biol Chem.
293:4445–4455. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Qiu XY, Hu DX, Chen WQ, Chen RQ, Qian SR,
Li CY, Li YJ, Xiong XX, Liu D, Pan F, et al: PD-L1 confers
glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT
activation. Biochim Biophys Acta Mol Basis Dis. 1864:1754–1769.
2018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ryall S, Tabori U and Hawkins C: Pediatric
low-grade glioma in the era of molecular diagnostics. Acta
Neuropathol Commun. 8:302020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Eser S, Schnieke A, Schneider G and Saur
D: Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer.
111:817–822. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Huang L, Guo Z, Wang F and Fu L: KRAS
mutation: From undruggable to druggable in cancer. Signal Transduct
Target Ther. 6:3862021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zacher A, Kaulich K, Stepanow S, Wolter M,
Kohrer K, Felsberg J, Malzkorn B and Reifenberger G: Molecular
diagnostics of gliomas using next generation sequencing of a
glioma-tailored gene panel. Brain Pathol. 27:146–159. 2017.
View Article : Google Scholar
|
56
|
Bannoura SF, Uddin MH, Nagasaka M, Fazili
F, Al-Hallak MN, Philip PA, El-Rayes B and Azmi AS: Targeting KRAS
in pancreatic cancer: New drugs on the horizon. Cancer Metastasis
Rev. 40:819–835. 2021. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ding H, Roncari L, Shannon P, Wu XL, Lau
N, Karaskova J, Gutmann DH, Squire JA, Nagy A and Guha A:
Astrocyte-specific expression of activated p21-ras results in
malignant astrocytoma formation in a transgenic mouse model of
human gliomas. Cancer Res. 61:3826–3836. 2001.PubMed/NCBI
|
58
|
Bienkowski M, Furtner J and Hainfellner
JA: Clinical neuropathology of brain tumors. Handb Clin Neurol.
145:477–534. 2017. View Article : Google Scholar : PubMed/NCBI
|
59
|
Sancho P, Barneda D and Heeschen C:
Hallmarks of cancer stem cell metabolism. Brit J Cancer.
114:1305–1312. 2016. View Article : Google Scholar : PubMed/NCBI
|
60
|
Bernards R, Jaffee E, Joyce JA, Lowe SW,
Mardis ER, Morrison SJ, Polyak K, Sears CL, Vousden KH and Zhang
ZM: A roadmap for the next decade in cancer research. Nat Cancer.
1:12–17. 2020. View Article : Google Scholar : PubMed/NCBI
|
61
|
Zong H, Verhaak RG and Canoll P: The
cellular origin for malignant glioma and prospects for clinical
advancements. Expert Rev Mol Diagn. 12:383–394. 2012. View Article : Google Scholar : PubMed/NCBI
|
62
|
Wang Z, Sun D, Chen YJ, Xie X, Shi Y,
Tabar V, Brennan CW, Bale TA, Jayewickreme CD, Laks DR, et al: Cell
lineage-based stratification for glioblastoma. Cancer Cell.
38:366–379.e8. 2020. View Article : Google Scholar : PubMed/NCBI
|