Role of gasdermin family proteins in cancers (Review)
- Authors:
- Xin Yang
- Zhe Tang
-
Affiliations: Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China - Published online on: July 18, 2023 https://doi.org/10.3892/ijo.2023.5548
- Article Number: 100
-
Copyright : © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tonnus W, Meyer C, Paliege A, Belavgeni A, von Mässenhausen A, Bornstein SR, Hugo C, Becker JU and Linkermann A: The pathological features of regulated necrosis. J Pathol. 247:697–707. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC and Shao F: Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 535:111–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tanaka S, Mizushina Y, Kato Y, Tamura M and Shiroishi T: Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome. G3 (Bethesda). 3:1843–1850. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zou J, Zheng Y, Huang Y, Tang D, Kang R and Chen R: The versatile gasdermin family: Their function and roles in diseases. Front Immunol. 12:7515332021. View Article : Google Scholar : PubMed/NCBI | |
Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, Jarrossay D, Sallusto F, Shen-Orr SS, Lanzavecchia A, Mann M and Meissner F: Social network architecture of human immune cells unveiled by quantitative proteomics. Nat Immunol. 18:583–593. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lunny DP, Weed E, Nolan PM, Marquardt A, Augustin M and Porter RM: Mutations in gasdermin 3 cause aberrant differentiation of the hair follicle and sebaceous gland. J Invest Dermatol. 124:615–621. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Wang Y, Ding J, Wang C, Zhou X, Gao W, Huang H, Shao F and Liu Z: A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 579:421–426. 2020. View Article : Google Scholar : PubMed/NCBI | |
Saeki N, Kuwahara Y, Sasaki H, Satoh H and Shiroishi T: Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm Genome. 11:718–724. 2000. View Article : Google Scholar : PubMed/NCBI | |
Saeki N, Usui T, Aoyagi K, Kim DH, Sato M, Mabuchi T, Yanagihara K, Ogawa K, Sakamoto H, Yoshida T and Sasaki H: Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer. 48:261–271. 2009. View Article : Google Scholar | |
Saeki N, Kim DH, Usui T, Aoyagi K, Tatsuta T, Aoki K, Yanagihara K, Tamura M, Mizushima H, Sakamoto H, et al: GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-beta-dependent apoptotic signalling. Oncogene. 26:6488–6498. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peng LS, Duan SL, Li RQ, Wang D, Han YY, Huang T, Yu YP, Ou CL and Wang JP: Prognostic value and immune infiltration of the gasdermin family in lung adenocarcinoma. Front Oncol. 12:10438622022. View Article : Google Scholar : PubMed/NCBI | |
Yao L, Li J, Xu Z, Yan Y and Hu K: GSDMs are potential therapeutic targets and prognostic biomarkers in clear cell renal cell carcinoma. Aging (Albany NY). 14:2758–2774. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Liu J, Zhao S, Ying J, Liu Y, Ma L, Shang Q, Meng X, Feng K, Zheng B, et al: Establishment and validation of a gasdermin signature to evaluate the immune status and direct risk-group classification in luminal-B breast cancer. Clin Transl Med. 11:e6142021. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Dai Q and Qi H: A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell Death Discov. 7:712021. View Article : Google Scholar : PubMed/NCBI | |
Tamura M, Tanaka S, Fujii T, Aoki A, Komiyama H, Ezawa K, Sumiyama K, Sagai T and Shiroishi T: Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics. 89:618–629. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chao KL, Kulakova L and Herzberg O: Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. Proc Natl Acad Sci USA. 114:E1128–E1137. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ruan J: Structural insight of gasdermin family driving pyroptotic cell death. Adv Exp Med Biol. 1172:189–205. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Shi P, Wang Y, Zou D, Wu X, Wang D, Hu Q, Zou Y, Huang Z, Ren J, et al: GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol. 11:496–508. 2019. View Article : Google Scholar : | |
Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, Wang Y, Li D, Liu W, Zhang Y, et al: Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 368:eaaz75482020. View Article : Google Scholar : PubMed/NCBI | |
Lutkowska A, Roszak A, Lianeri M, Sowinska A, Sotiri E and Jagodzinski PP: Analysis of rs8067378 polymorphism in the risk of uterine cervical cancer from a polish population and its impact on gasdermin B expression. Mol Diagn Ther. 21:199–207. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hergueta-Redondo M, Sarrio D, Molina-Crespo A, Megias D, Mota A, Rojo-Sebastian A, García-Sanz P, Morales S, Abril S, Cano A, et al: Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS One. 9:e900992014. View Article : Google Scholar : PubMed/NCBI | |
Hergueta-Redondo M, Sarrio D, Molina-Crespo A, Vicario R, Bernadó-Morales C, Martínez L, Rojo-Sebastián A, Serra-Musach J, Mota A, Martínez-Ramírez Á, et al: Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer. Oncotarget. 7:56295–56308. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gamez-Chiachio M, Molina-Crespo A, Ramos-Nebot C, Martinez-Val J, Martinez L, Gassner K, Llobet FJ, Soriano M, Hernandez A, Cordani M, et al: Gasdermin B over-expression modulates HER2-targeted therapy resistance by inducing protective autophagy through Rab7 activation. J Exp Clin Cancer Res. 41:2852022. View Article : Google Scholar : PubMed/NCBI | |
Molina-Crespo A, Cadete A, Sarrio D, Gámez-Chiachio M, Martinez L, Chao K, Olivera A, Gonella A, Díaz E, Palacios J, et al: Intracellular delivery of an antibody targeting gasdermin-B Reduces HER2 breast cancer aggressiveness. Clin Cancer Res. 25:4846–4858. 2019. View Article : Google Scholar : PubMed/NCBI | |
Komiyama H, Aoki A, Tanaka S, Maekawa H, Kato Y, Wada R, Maekawa T, Tamura M and Shiroishi T: Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB). Genes Genet Syst. 85:75–83. 2010. View Article : Google Scholar : PubMed/NCBI | |
Saeki N, Komatsuzaki R, Chiwaki F, Yanagihara K and Sasaki H: A GSDMB enhancer-driven HSV thymidine kinase-expressing vector for controlling occult peritoneal dissemination of gastric cancer cells. BMC Cancer. 15:4392015. View Article : Google Scholar : PubMed/NCBI | |
Li S, Li X, Zhang S, Feng Y, Jia T, Zhu M, Fang L, Gong L, Dong S, Kong X, et al: Association Between GSDMB gene polymorphism and cervical cancer in the Northeast Chinese Han Population. Front Genet. 13:8607272022. View Article : Google Scholar : PubMed/NCBI | |
He H, Yi L, Zhang B, Yan B, Xiao M, Ren J, Zi D, Zhu L, Zhong Z, Zhao X, et al: USP24-GSDMB complex promotes bladder cancer proliferation via activation of the STAT3 pathway. Int J Biol Sci. 17:2417–2429. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Zhou Z, Chai Y and Zhang Y: Upregulated GSDMB in clear cell renal cell carcinoma is associated with immune infiltrates and poor prognosis. J Immunol Res. 2021:77535532021. View Article : Google Scholar : PubMed/NCBI | |
Orning P, Lien E and Fitzgerald KA: Gasdermins and their role in immunity and inflammation. J Exp Med. 216:2453–2465. 2019. View Article : Google Scholar : PubMed/NCBI | |
Watabe K, Ito A, Asada H, Endo Y, Kobayashi T, Nakamoto K, Itami S, Takao S, Shinomura Y, Aikou T, et al: Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn J Cancer Res. 92:140–151. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu JM, Nie L, Chen Y, Wang YC, Liu C, et al: PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 22:1264–1275. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Ji Z and Qiang L: Molecular characteristics, clinical implication, and cancer immunity interactions of pyroptosis-related genes in breast cancer. Front Med (Lausanne). 8:7026382021. View Article : Google Scholar : PubMed/NCBI | |
Sun K, Chen RX, Li JZ and Luo ZX: LINC00511/hsa-miR-573 axis-mediated high expression of Gasdermin C associates with dismal prognosis and tumor immune infiltration of breast cancer. Sci Rep. 12:147882022. View Article : Google Scholar : PubMed/NCBI | |
Zhang JY, Zhou B, Sun RY, Ai YL, Cheng K, Li FN, Wang BR, Liu FJ, Jiang ZH, Wang WJ, et al: The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 31:980–997. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Xu Z, Chen X, Wang X, Zeng S, Qian L, Yang X, Ou C, Lin W, Gong Z and Yan Y: Overexpression of GSDMC is a prognostic factor for predicting a poor outcome in lung adenocarcinoma. Mol Med Rep. 21:360–370. 2020.PubMed/NCBI | |
Miguchi M, Hinoi T, Shimomura M, Adachi T, Saito Y, Niitsu H, Kochi M, Sada H, Sotomaru Y, Ikenoue T, et al: Gasdermin C is upregulated by inactivation of transforming growth factor beta receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation. PLoS One. 11:e01664222016. View Article : Google Scholar | |
Pereira BS, Wisnieski F, Calcagno DQ, Santos LC, Gigek CO, Chen ES, Rasmussen LT, Payão SLM, Almeida RS, Pinto CA, et al: Genetic and transcriptional analysis of 8q24.21 cluster in gastric cancer. Anticancer Res. 42:4381–4394. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yan C, Niu Y, Li F, Zhao W and Ma L: System analysis based on the pyroptosis-related genes identifies GSDMC as a novel therapy target for pancreatic adenocarcinoma. J Transl Med. 20:4552022. View Article : Google Scholar : PubMed/NCBI | |
Berkel C and Cacan E: Differential expression and copy number variation of gasdermin (GSDM) family members, pore-forming proteins in pyroptosis, in normal and malignant serous ovarian tissue. Inflammation. 44:2203–2216. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
Burdette BE, Esparza AN, Zhu H and Wang S: Gasdermin D in pyroptosis. Acta Pharm Sin B. 11:2768–2782. 2021. View Article : Google Scholar : PubMed/NCBI | |
Broz P and Dixit VM: Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol. 16:407–420. 2016. View Article : Google Scholar : PubMed/NCBI | |
Benaoudia S, Martin A, Puig Gamez M, Gay G, Lagrange B, Cornut M, Krasnykov K, Claude JB, Bourgeois CF, Hughes S, et al: A genome-wide screen identifies IRF2 as a key regulator of caspase-4 in human cells. EMBO Rep. 20:e482352019. View Article : Google Scholar : PubMed/NCBI | |
Kayagaki N, Lee BL, Stowe IB, Kornfeld OS, O'Rourke K, Mirrashidi KM, Haley B, Watanabe C, Roose-Girma M, Modrusan Z, et al: IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci Signal. 12:eaax49172019. View Article : Google Scholar : PubMed/NCBI | |
Demarco B, Grayczyk JP, Bjanes E, Le Roy D, Tonnus W, Assenmacher CA, Radaelli E, Fettrelet T, Mack V, Linkermann A, et al: Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci Adv. 6:eabc34652020. View Article : Google Scholar : PubMed/NCBI | |
Brubaker SW, Brewer SM, Massis LM, Napier BA and Monack DM: A Rapid Caspase-11 Response Induced by IFNү priming is independent of guanylate binding proteins. iScience. 23:1016122020. View Article : Google Scholar | |
Zhang C, Zhao C, Chen X, Tao R, Wang S, Meng G, Liu X, Shao C and Su X: Induction of ASC pyroptosis requires gasdermin D or caspase-1/11-dependent mediators and IFNβ from pyroptotic macrophages. Cell Death Dis. 11:4702020. View Article : Google Scholar | |
Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397–406. 2014. View Article : Google Scholar : | |
Zhang J, Chen Y and He Q: Distinct characteristics of dasatinib-induced pyroptosis in gasdermin E-expressing human lung cancer A549 cells and neuroblastoma SH-SY5Y cells. Oncol Lett. 20:145–154. 2020. View Article : Google Scholar | |
Xi G, Gao J, Wan B, Zhan P, Xu W, Lv T and Song Y: GSDMD is required for effector CD8(+) T cell responses to lung cancer cells. Int Immunopharmacol. 74:1057132019. View Article : Google Scholar : PubMed/NCBI | |
Traughber CA, Deshpande GM, Neupane K, Bhandari N, Khan MR, McMullen MR, Swaidani S, Opoku E, Muppala S, Smith JD, et al: Myeloid-cell-specific role of Gasdermin D in promoting lung cancer progression in mice. iScience. 26:1060762023. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Qiu X, Xi G, Liu H, Zhang F, Lv T and Song Y: Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non-small cell lung cancer. Oncol Rep. 40:1971–1984. 2018.PubMed/NCBI | |
Peng J, Jiang H, Guo J, Huang J, Yuan Q, Xie J and Xiao K: CD147 Expression is associated with tumor proliferation in bladder cancer via GSDMD. Biomed Res Int. 2020:76389752020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li K, Lin X, Yao Z, Wang S, Xiong X, Ning Z, Wang J, Xu X, Jiang Y, et al: Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 450:22–31. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pizato N, Luzete BC, Kiffer LFMV, Corrêa LH, de Oliveira Santos I, Assumpção JAF, Ito MK and Magalhães KG: Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 8:19522018. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Luo B, Wu X, Guan F, Yu X, Zhao L, Ke X, Wu J and Yuan J: Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int J Biol Sci. 17:2606–2621. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Liu PY, Bao W, Chen SJ, Wu FS and Zhu PY: Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer. 20:282020. View Article : Google Scholar : PubMed/NCBI | |
Shen X, Zhang Q, He Z, Xiao S, Li H and Huang Z: Overexpression of gasdermin D promotes invasion of adenoid cystic carcinoma. Int J Clin Exp Pathol. 13:1802–1811. 2020.PubMed/NCBI | |
Lv T, Xiong X, Yan W, Liu M, Xu H and He Q: Targeting of GSDMD sensitizes HCC to anti-PD-1 by activating cGAS pathway and downregulating PD-L1 expression. J Immunother Cancer. 10:e0047632022. View Article : Google Scholar : PubMed/NCBI | |
Yamagishi R, Kamachi F, Nakamura M, Yamazaki S, Kamiya T, Takasugi M, Cheng Y, Nonaka Y, Yukawa-Muto Y, Thuy LTT, et al: Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci Immunol. 7:eabl72092022. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, Yu T, Wu X, Shi Y, Ma P and Shu Y: Pyroptosis: A new frontier in cancer. Biomed Pharmacother. 121:1095952020. View Article : Google Scholar | |
Qiao L, Wu X, Zhang J, Liu L, Sui X, Zhang R, Liu W, Shen F, Sun Y and Xi X: α-NETA induces pyroptosis of epithelial ovarian cancer cells through the GSDMD/caspase-4 pathway. FASEB J. 33:12760–12767. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang WJ, Chen D, Jiang MZ, Xu B, Li XW, Chu Y, Zhang YJ, Mao R, Liang J and Fan DM: Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. J Dig Dis. 19:74–83. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tanaka S, Orita H, Kataoka T, Miyazaki M, Saeki H, Wada R, Brock MV, Fukunaga T, Amano T and Shiroishi T: Gasdermin D represses inflammation-induced colon cancer development by regulating apoptosis. Carcinogenesis. 44:341–349. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Kang Y, Li Y, Sun L, Zhang J, Qian S, Luo K, Jiang Y, Sun L and Xu F: Gasdermin D in different subcellular locations predicts diverse progression, immune microenvironment and prognosis in colorectal cancer. J Inflamm Res. 14:6223–6235. 2021. View Article : Google Scholar : PubMed/NCBI | |
Masuda Y, Futamura M, Kamino H, Nakamura Y, Kitamura N, Ohnishi S, Miyamoto Y, Ichikawa H, Ohta T, Ohki M, et al: The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. J Hum Genet. 51:652–664. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ouyang X, Zhou J, Lin L, Zhang Z, Luo S and Hu D: Pyroptosis, inflammasome, and gasdermins in tumor immunity. Innate Immun. 29:3–13. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, et al: Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 579:415–420. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G and Alnemri ES: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 8:141282017. View Article : Google Scholar : PubMed/NCBI | |
Jia C, Zhang Z, Tang J, Cai MC, Zang J, Shi K, Sun Y, Wu J, Shi H, Shi W, et al: Epithelial-Mesenchymal transition induces GSDME transcriptional activation for inflammatory pyroptosis. Front Cell Dev Biol. 9:7813652021. View Article : Google Scholar : PubMed/NCBI | |
Vernon M, Wilski NA, Kotas D, Cai W, Pomante D, Tiago M, Alnemri ES and Aplin AE: Raptinal induces gasdermin E-Dependent pyroptosis in naive and therapy-resistant melanoma. Mol Cancer Res. 20:1811–1821. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Pei W, Jiang M, Huang Y, Dong F, Jiang Z, Xu Y and Li Z: DFNA5 regulates immune cells infiltration and exhaustion. Cancer Cell Int. 22:1072022. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Wang Y, Yang D, Gong Y, Rao F, Liu R, Danna Y, Li J, Fan J, Chen J, et al: A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma. EBioMedicine. 41:244–255. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Liu H, Dong Q, Li H, Zhang B, Liu Y, Zhong L and Tang H: Prognostic role of DFNA5 in head and neck squamous cell carcinoma revealed by systematic expression analysis. BMC Cancer. 21:9512021. View Article : Google Scholar : PubMed/NCBI | |
Yin J, Che G, Wang W, Chen S and Liu J: Investigating the prognostic significance of pyroptosis-related genes in gastric cancer and their impact on cells' biological functions. Front Oncol. 12:8612842022. View Article : Google Scholar : PubMed/NCBI | |
Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T and Alnemri ES: Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun. 10:16892019. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Li Y, Zhu Y, Li N, Li W, Shang C, Song G, Li S, Cong J, Li T, et al: Apoptin induces pyroptosis of colorectal cancer cells via the GSDME-dependent pathway. Int J Biol Sci. 18:717–730. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhang H, Li D, Zhou X, Qin Q and Zhang Q: Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J Cell Mol Med. 25:8159–8168. 2021. View Article : Google Scholar : PubMed/NCBI | |
An H, Heo JS, Kim P, Lian Z, Lee S, Park J, Hong E, Pang K, Park Y, Ooshima A, et al: Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis. 12:1592021. View Article : Google Scholar : PubMed/NCBI | |
de Beeck KO, Van Laer L and Van Camp G: DFNA5, a gene involved in hearing loss and cancer: A review. Ann Otol Rhinol Laryngol. 121:197–207. 2012. View Article : Google Scholar : PubMed/NCBI | |
Akino K, Toyota M, Suzuki H, Imai T, Maruyama R, Kusano M, Nishikawa N, Watanabe Y, Sasaki Y, Abe T, et al: Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci. 98:88–95. 2007. View Article : Google Scholar | |
Ibrahim J, Op de Beeck K, Fransen E, Fransen E, Croes L, Beyens M, Suls A, Vanden Berghe W, Peeters M and Van Camp G: Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer. Cancer Med. 8:2133–2145. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xia S, Zhang Z, Wu H and Lieberman J: Channelling inflammation: Gasdermins in physiology and disease. Nat Rev Drug Discov. 20:384–405. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Yu J, Mu M, Chen Z, Xu Z, Zhao C, Yang K, Zheng J, Qin X, Zhao W and Sun X: DFNA5 inhibits colorectal cancer proliferation by suppressing the mTORC1/2 signaling pathways via upregulation of DEPTOR. Cell Cycle. 21:2165–2178. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tan G, Lin C, Huang C, Chen B, Chen J, Shi Y and Zhi F: Radiosensitivity of colorectal cancer and radiation-induced gut damages are regulated by gasdermin E. Cancer Lett. 529:1–10. 2022. View Article : Google Scholar : PubMed/NCBI | |
Di M, Miao J, Pan Q, Wu Z, Chen B, Wang M, Zhao J, Huang H, Bai J, Wang Q, et al: OTUD4-mediated GSDME deubiquitination enhances radiosensitivity in nasopharyngeal carcinoma by inducing pyroptosis. J Exp Clin Cancer Res. 41:3282022. View Article : Google Scholar : PubMed/NCBI | |
Li F, Xia Q, Ren L, Nie Y, Ren H, Guo X, Yu J, Xing Y and Chen Z: GSDME increases chemotherapeutic drug sensitivity by inducing pyroptosis in retinoblastoma cells. Oxid Med Cell Longev. 2022:23718072022.PubMed/NCBI | |
Xie B, Liu T, Chen S, Zhang Y, He D, Shao Q, Zhang Z and Wang C: Combination of DNA demethylation and chemotherapy to trigger cell pyroptosis for inhalation treatment of lung cancer. Nanoscale. 13:18608–18615. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shen X, Wang H, Weng C, Jiang H and Chen J: Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity. Cell Death Dis. 12:1862021. View Article : Google Scholar : PubMed/NCBI | |
Mai FY, He P, Ye JZ, Xu LH, Ouyang DY, Li CG, Zeng QZ, Zeng CY, Zhang CC, He XH and Hu B: Caspase-3-mediated GSDME activation contributes to cisplatin- and doxorubicin-induced secondary necrosis in mouse macrophages. Cell Prolif. 52:e126632019. View Article : Google Scholar : PubMed/NCBI | |
Delmaghani S, del Castillo FJ, Michel V, Leibovici M, Aghaie A, Ron U, Van Laer L, Ben-Tal N, Van Camp G, Weil D, et al: Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet. 38:770–778. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Deng W, Lou X, Bai Y, Wang J, Zeng H, Gong S and Liu X: Gasdermins: Pore-forming activities and beyond. Acta Biochim Biophys Sin (Shanghai). 52:467–474. 2020. View Article : Google Scholar : PubMed/NCBI | |
Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, et al: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 362:1064–1069. 2018. View Article : Google Scholar : PubMed/NCBI | |
Evavold CL, Ruan J, Tan Y, Xia S, Wu H and Kagan JC: The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity. 48:35–44 e6. 2018. View Article : Google Scholar | |
Mu M, Yu Q, Zhang Q, Guo J, Wang X, Sun X and Yu J: A pan-cancer analysis of molecular characteristics and oncogenic role of gasdermins. Cancer Cell Int. 22:802022. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Yuan D, Zhang F and Tang R: A systematic pan-cancer analysis of the gasdermin (GSDM) family of genes and their correlation with prognosis, the tumor microenvironment, and drug sensitivity. Front Genet. 13:9267962022. View Article : Google Scholar : PubMed/NCBI | |
Huo CL, Deng Y and Sun ZG: A comprehensive analysis of gasdermin family gene as therapeutic targets in pan-cancer. Sci Rep. 12:133292022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Fang Y, Chen X, Wang Z, Liang X, Zhang T, Liu M, Zhou N, Lv J, Tang K, et al: Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol. 5:eaax79692020. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J and Hu J: The role of pyroptosis in cancer: Pro-cancer or pro-'host'? Cell Death Dis. 10:6502019. View Article : Google Scholar | |
Karki R and Kanneganti TD: Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 19:197–214. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ruan J, Xia S, Liu X, Lieberman J and Wu H: Cryo-EM structure of the gasdermin A3 membrane pore. Nature. 557:62–67. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, Wang L, Fu TM, Jacobson MP, Greka A, et al: Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. 593:607–611. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang C, Yang J, Zhou B, Yang R, Ramachandran R, Abbott DW and Xiao TS: Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity. 51:43–49 e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, Reed C, Peguero E, de Stanchina E and Kentsis A and Bachovchin DA: DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med. 24:1151–1156. 2018. View Article : Google Scholar : PubMed/NCBI | |
Johnson DC, Okondo MC, Orth EL, Rao SD, Huang HC, Ball DP and Bachovchin DA: DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 11:6282020. View Article : Google Scholar : PubMed/NCBI | |
Li F, Aljahdali I and Ling X: Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? J Exp Clin Cancer Res. 38:3682019. View Article : Google Scholar : PubMed/NCBI | |
Yue E, Tuguzbaeva G, Chen X, Qin Y, Li A, Sun X, Dong C, Liu Y, Yu Y, Zahra SM, et al: Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma. Phytomedicine. 56:286–294. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang CC, Li CG, Wang YF, Xu LH, He XH, Zeng QZ, Zeng CY, Mai FY, Hu B and Ouyang DY: Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis. 24:312–325. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu P, Wang HY, Tian M, Li AX, Chen XS, Wang XL, Zhang Y and Cheng Y: Eukaryotic elongation factor-2 kinase regulates the cross-talk between autophagy and pyroptosis in doxorubicin-treated human melanoma cells in vitro. Acta Pharmacol Sin. 40:1237–1244. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J, Wang K, Sun X and Zheng J: Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis. 10:1932019. View Article : Google Scholar : PubMed/NCBI | |
Rathkey JK, Zhao J, Liu Z, Chen Y, Yang J, Kondolf HC, Benson BL, Chirieleison SM, Huang AY, Dubyak GR, et al: Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol. 3:eaat27382018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zhang Y, Wang H, Zhang X, Chen Y and Chen G: Microglial pyroptosis in hippocampus mediates sevolfurane-induced cognitive impairment in aged mice via ROS-NLRP3 inf lammasome pathway. Int Immunopharmacol. 116:1097252023. View Article : Google Scholar | |
Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, Ruan J, Luo X, Lou X, Bai Y, et al: FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 21:736–745. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhuang L, Luo X, Liang J, Sun E and He Y: Protection of MCC950 against Alzheimer's disease via inhibiting neuronal pyroptosis in SAMP8 mice. Exp Brain Res. 238:2603–2614. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tian D, Xing Y, Gao W, Zhang H, Song Y, Tian Y and Dai Z: Sevoflurane aggravates the progress of Alzheimer's disease through NLRP3/Caspase-1/Gasdermin D pathway. Front Cell Dev Biol. 9:8014222022. View Article : Google Scholar : PubMed/NCBI | |
Cai W, Wu Z, Lai J, Yao J, Zeng Y, Fang Z, Lin W, Chen J, Xu C and Chen X: LDC7559 inhibits microglial activation and GSDMD-dependent pyroptosis after subarachnoid hemorrhage. Front Immunol. 14:11173102023. View Article : Google Scholar : PubMed/NCBI | |
Yu E, Zhang E, Lv X, Yan L, Lin Z, Siaw-Debrah F, Zhang Y, Yang S, Ruan L, ZhuGe Q and Ni H: LDC7559 Exerts neuroprotective effects by inhibiting GSDMD-Dependent pyroptosis of microglia in mice with traumatic brain injury. J Neurotrauma. 40:742–757. 2023. View Article : Google Scholar |