1
|
Mangelsdorf DJ, Thummel C, Beato M,
Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M,
Chambon P and Evans RM: The nuclear receptor superfamily: the
second decade. Cell. 83:835–839. 1995.
|
2
|
Cheung E and Kraus WL: Genomic analyses of
hormone signaling and gene regulation. Annu Rev Physiol.
72:191–218. 2010.
|
3
|
Gadaleta RM and Magnani L: Nuclear
receptors and chromatin: an inducible couple. J Mol Endocrinol.
52:R137–R149. 2014.
|
4
|
Lonard DM, Lanz RB and O'Malley BW:
Nuclear receptor coregulators and human disease. Endocr Rev.
28:575–587. 2007.
|
5
|
Fatica A and Bozzoni I: Long non-coding
RNAs: New players in cell differentiation and development. Nat Rev
Genet. 15:7–21. 2014.
|
6
|
Statello L, Guo CJ, Chen LL and Huarte M:
Gene regulation by long non-coding RNAs and its biological
functions. Nat Rev Mol Cell Biol. 22:96–118. 2021.
|
7
|
Fang Y and Fullwood MJ: Roles, functions,
and mechanisms of long Non-coding RNAs in Cancer. Genomics
Proteomics Bioinformatics. 14:42–54. 2016.
|
8
|
Foulds CE, Panigrahi AK, Coarfa C, Lanz RB
and O'Malley BW: Long Noncoding RNAs as targets and regulators of
nuclear receptors. Curr Top Microbiol Immunol. 394:143–176.
2016.
|
9
|
Wu J, Nagy LE, Liangpunsakul S and Wang L:
Non-coding RNA crosstalk with nuclear receptors in liver disease.
Biochim Biophys Acta Mol Basis Dis. 1867:1660832021.
|
10
|
Lanz RB, McKenna NJ, Onate SA, Albrecht U,
Wong J, Tsai SY, Tsai MJ and O'Malley BW: A steroid receptor
coactivator, SRA, functions as an RNA and is present in an SRC-1
complex. Cell. 97:17–27. 1999.
|
11
|
Emberley E, Huang GJ, Hamedani MK, Czosnek
A, Ali D, Grolla A, Lu B, Watson PH, Murphy LC and Leygue E:
Identification of new human coding steroid receptor RNA activator
isoforms. Biochem Biophys Res Commun. 301:509–515. 2003.
|
12
|
Sheng L, Ye L, Zhang D, Cawthorn WP and Xu
B: New Insights Into the Long Non-coding RNA SRA: Physiological
functions and mechanisms of action. Front Med (Lausanne).
5:2442018.
|
13
|
Szwarc MM, Kommagani R, Lessey BA and
Lydon JP: The p160/steroid receptor coactivator family: potent
arbiters of uterine physiology and dysfunction. Biol Reprod.
91:1222014.
|
14
|
Tenga A, Beard JA, Takwi A, Wang YM and
Chen T: Regulation of Nuclear Receptor Nur77 by miR-124. PLoS One.
11:e01484332016.
|
15
|
Zhang CJ, Liu C, Wang YX, Zhu N, Hu ZY,
Liao DF and Qin L: Long non-coding RNA-SRA promotes neointimal
hyperplasia and vascular smooth muscle cells proliferation via
MEK-ERK-CREB pathway. Vascul Pharmacol. 116:16–23. 2019.
|
16
|
Ho JC, Lee CH and Hong CH: Targeting
steroid receptor RNA activator (SRA), a long non-coding RNA,
enhances melanogenesis through activation of TRP1 and inhibition of
p38 phosphorylation. PLoS One. 15:e02375772020.
|
17
|
Tello-Flores VA, Beltrán-Anaya FO,
Ramírez-Vargas MA, Esteban-Casales BE, Navarro-Tito N,
Alarcón-Romero LDC, Luciano-Villa CA, Ramírez M, Del
Moral-Hernández Ó and Flores-Alfaro E: Role of Long Non-Coding RNAs
and the molecular mechanisms involved in insulin resistance. Int J
Mol Sci. 22:72562021.
|
18
|
Eoh KJ, Paek J, Kim SW, Kim HJ, Lee HY,
Lee SK and Kim YT: Long non-coding RNA, steroid receptor RNA
activator (SRA), induces tumor proliferation and invasion through
the NOTCH pathway in cervical cancer cell lines. Oncol Rep.
38:3481–3488. 2017.
|
19
|
Park SA, Kim LK, Kim YT, Heo TH and Kim
HJ: Long non-coding RNA steroid receptor activator promotes the
progression of endometrial cancer via Wnt/β-catenin signaling
pathway. Int J Biol Sci. 6:99–115. 2020.
|
20
|
Hong CH, Ho JC and Lee CH: Steroid
Receptor RNA Activator, a Long Noncoding RNA, Activates p38,
facilitates epithelial-mesenchymal transformation, and mediates
experimental melanoma metastasis. J Invest Dermatol.
140:1355–1363.e1. 2020.
|
21
|
Mahdevar M, Vatandoost J, Seyed Forootan
F, Kiani-Esfahani A, Esmaeili M, Peymani M, Tavakkoli H, Osmay Gure
A, Nasr Esfahani MH and Ghaedi K: Steroid receptor RNA activator
gene footprint in the progression and drug resistance of colorectal
cancer through oxidative phosphorylation pathway. Life Sci.
285:1199502021.
|
22
|
Lanz RB, Chua SS, Barron N, Söder BM,
DeMayo F and O'Malley BW: Steroid receptor RNA activator stimulates
proliferation as well as apoptosis in vivo. Mol Cell Biol.
23:7163–7176. 2003.
|
23
|
Kurisu T, Tanaka T, Ishii J, Matsumura K,
Sugimura K, Nakatani T and Kawashima H: Expression and function of
human steroid receptor RNA activator in prostate cancer cells: Role
of endogenous hSRA protein in androgen receptor-mediated
transcription. Prostate Cancer Prostatic Dis. 9:173–178. 2006.
|
24
|
Kim LK, Park SA, Yang Y, Kim YT, Heo TH
and Kim HJ: LncRNA SRA mediates cell migration, invasion, and
progression of ovarian cancer via NOTCH signaling and
epithelial-mesenchymal transition. Biosci Rep.
41:BSR202105652021.
|
25
|
Nilsson S, Mäkelä S, Treuter E, Tujague M,
Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M and
Gustafsson JA: Mechanisms of estrogen action. Physiol Rev.
81:1535–1565. 2001.
|
26
|
Eyster KM: The estrogen receptors: An
overview from different perspectives. Methods Mol Biol. 1366:1–10.
2016.
|
27
|
Moggs JG and Orphanides G: Estrogen
receptors: Orchestrators of pleiotropic cellular responses. EMBO
Rep. 2:775–781. 2001.
|
28
|
Carroll JS, Meyer CA, Song J, Li W,
Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC,
Hall GF, et al: Genome-wide analysis of estrogen receptor binding
sites. Nat Genet. 38:1289–1297. 2006.
|
29
|
Stein RA, Chang CY, Kazmin DA, Way J,
Schroeder T, Wergin M, Dewhirst MW and McDonnell DP:
Estrogen-related receptor alpha is critical for the growth of
estrogen receptor-negative breast cancer. Cancer Res. 68:8805–8812.
2008.
|
30
|
Bhan A, Hussain I, Ansari KI, Kasiri S,
Bashyal A and Mandal SS: Antisense transcript long noncoding RNA
(lncRNA) HOTAIR is transcriptionally induced by estradiol. J Mol
Biol. 425:3707–3722. 2013.
|
31
|
Sørensen KP, Thomassen M, Tan Q, Bak M,
Cold S, Burton M, Larsen MJ and Kruse TA: Long non-coding RNA
HOTAIR is an independent prognostic marker of metastasis in
estrogen receptor-positive primary breast cancer. Breast Cancer Res
Treat. 142:529–536. 2013.
|
32
|
Cantile M, Di Bonito M, Cerrone M, Collina
F, De Laurentiis M and Botti G: Long Non-Coding RNA HOTAIR in
breast cancer therapy. Cancers (Basel). 12:11972020.
|
33
|
Gupta RA, Shah N, Wang KC, Kim J, Horlings
HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long
non-coding RNA HOTAIR reprograms chromatin state to promote cancer
metastasis. Nature. 464:1071–1076. 2010.
|
34
|
Tao S, He H and Chen Q: Estradiol induces
HOTAIR levels via GPER-mediated miR-148a inhibition in breast
cancer. J Transl Med. 13:1312015.
|
35
|
Aiello A, Bacci L, Re A, Ripoli C,
Pierconti F, Pinto F, Masetti R, Grassi C, Gaetano C, Bassi PF, et
al: MALAT1 and HOTAIR Long Non-Coding RNAs play opposite role in
estrogen-mediated transcriptional regulation in prostate cancer
cells. Sci Rep. 6:384142016.
|
36
|
Zhao Z, Chen C, Liu Y and Wu C:
17β-Estradiol treatment inhibits breast cell proliferation,
migration and invasion by decreas-815 ing MALAT-1 RNA level.
Biochem Biophys Res Commun. 445:388–393. 2014.
|
37
|
Wang Z, Katsaros D, Biglia N, Shen Y, Fu
Y, Loo LWM, Jia W, Obata Y and Yu H: High expression of long
non-coding RNA MALAT1 in breast cancer is associated with poor
relapse-free survival. Breast Cancer Res Treat. 171:261–271.
2018.
|
38
|
Huang Z, Qin Q, Xia L, Lian B, Tan Q, Yu Y
and Mo Q: Significance of Oncotype DX 21-gene test and expression
of long Non-Coding RNA MALAT1 in early and estrogen
receptor-positive breast cancer patients. Cancer Manag Res.
13:587–593. 2021.
|
39
|
Alipoor FJ, Asadi MH and Torkzadeh-Mahani
M: MIAT lncRNA is overexpressed in breast cancer and its inhibition
triggers senescence and G1 arrest in MCF7 cell line. J Cell
Biochem. 119:6470–6481. 2018.
|
40
|
Luan T, Zhang X, Wang S, Song Y, Zhou S,
Lin J, An W, Yuan W, Yang Y, Cai H, et al: Long non-coding RNA MIAT
promotes breast cancer progression and functions as ceRNA to
regulate DUSP7 expression by sponging miR-155-5p. Oncotarget.
8:76153–76164. 2017.
|
41
|
Li Y, Jiang B, Wu X, Huang Q, Chen W, Zhu
H, Qu X, Xie L, Ma X and Huang G: Long non-coding RNA MIAT is
estrogen-responsive and promotes estrogen-induced proliferation in
ER-positive breast cancer cells. Biochem Biophys Res Commun.
503:45–50. 2018.
|
42
|
Wang Z, Katsaros D, Biglia N, Shen Y, Loo
L, Yu X, Lin H, Fu Y, Chu WM, Fei P, et al: ERα upregulates the
expression of long non-coding RNA LINC00472 which suppresses the
phosphorylation of NF-κB in breast cancer. Breast Cancer Res Treat.
175:353–368. 2019.
|
43
|
Jonsson P, Coarfa C, Mesmar F, Raz T,
Rajapakshe K, Thompson JF, Gunaratne PH and Williams C:
Single-Molecule sequencing reveals estrogen-regulated clinically
relevant lncRNAs in Breast Cancer. Mol Endocrinol. 29:1634–1645.
2015.
|
44
|
Liu D, Rudland PS, Sibson DR and
Barraclough R: Identification of mRNAs differentially-expressed
between benign and malignant breast tumour cells. Br J Cancer.
87:423–431. 2002.
|
45
|
Miano V, Ferrero G, Reineri S, Caizzi L,
Annaratone L, Ricci L, Cutrupi S, Castellano I, Cordero F and De
Bortoli M: Luminal long non-coding RNAs regulated by estrogen
receptor alpha in a ligand-independent manner show functional roles
in breast cancer. Oncotarget. 7:3201–3216. 2016.
|
46
|
Niknafs YS, Han S, Ma T, Speers C, Zhang
C, Wilder-Romans K, Iyer MK, Pitchiaya S, Malik R, Hosono Y, et al:
The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1
in breast cancer progression. Nat Commun. 7:127912016.
|
47
|
Hu C: LncRNA DSCAM-AS1: A pivotal
therapeutic target in cancer. Mini Rev Med Chem. 23:530–536.
2023.
|
48
|
Sun W, Li AQ, Zhou P, Jiang YZ, Jin X, Liu
YR, Guo YJ, Yang WT, Shao ZM and Xu XE: DSCAM-AS1 regulates the
G1/S cell cycle transition and is an independent prognostic factor
of poor survival in luminal breast cancer patients treated with
endocrine therapy. Cancer Med. 7:6137–6146. 2018.
|
49
|
Treeck O, Weber F, Fritsch J, Skrzypczak
M, Schüler-Toprak S, Buechler C and Ortmann O: DSCAM-AS1 Long
Non-Coding RNA exerts oncogenic functions in endometrial
adenocarcinoma via activation of a tumor-promoting transcriptome
profile. Biomedicines. 10:17272022.
|
50
|
Yadav N, Sunder R, Desai S, Dharavath B,
Chandrani P, Godbole M and Dutt A: Progesterone modulates the
DSCAM-AS1/miR-130a/ESR1 axis to suppress cell invasion and
migration in breast cancer. Breast Cancer Res. 24:972022.
|
51
|
Xu SP, Zhang JF, Sui SY, Bai NX, Gao S,
Zhang GW, Shi QY, You ZL, Zhan C and Pang D: Downregulation of the
long noncoding RNA EGOT correlates with malignant status and poor
prognosis in breast cancer. Tumour Biol. 36:9807–9812. 2015.
|
52
|
Sun M, Gadad SS, Kim DS and Kraus WL:
Discovery, Annotation, and functional analysis of long noncoding
RNAs controlling cell-cycle gene expression and proliferation in
breast cancer cells. Mol Cell. 59:698–711. 2015.
|
53
|
Zhang X, Gao S, Li Z, Wang W and Liu G:
Identification and analysis of estrogen receptor α promoting
tamoxifen resistance-related lncRNAs. Biomed Res Int.
20:90317232020.
|
54
|
Basak P, Chatterjee S, Bhat V, Su A, Jin
H, Lee-Wing V, Liu Q, Hu P, Murphy LC and Raouf A: Long Non-Coding
RNA H19 acts as an estrogen receptor modulator that is required for
endocrine therapy resistance in ER+ Breast cancer cells. Cell
Physiol Biochem. 51:1518–1532. 2018.
|
55
|
Sun H, Wang G, Peng Y, Zeng Y, Zhu QN, Li
TL, Cai JQ, Zhou HH and Zhu YS: H19 lncRNA mediates
17β-estradiol-induced cell proliferation in MCF-7 breast cancer
cells. Oncol Rep. 33:3045–3052. 2015.
|
56
|
Ma T, Liang Y, Li Y, Song X, Zhang N, Li
X, Chen B, Zhao W, Wang L and Yang Q: LncRNA LINP1 confers
tamoxifen resistance and negatively regulated by ER signaling in
breast cancer. Cell Signal. 68:1095362020.
|
57
|
Si X, Zang R, Zhang E, Liu Y, Shi X, Zhang
E, Shao L, Li A, Yang N, Han X, et al: LncRNA H19 confers
chemoresistance in ERα-positive breast cancer through epigenetic
silencing of the pro-apoptotic gene BIK. Oncotarget. 7:81452–81462.
2016.
|
58
|
Tu C, Ren X, He J, Zhang C, Chen R, Wang W
and Li Z: The Value of LncRNA BCAR4 as a prognostic biomarker on
clinical outcomes in human cancers. J Cancer. 10:5992–6002.
2019.
|
59
|
Peng R, Cao J, Guo Q, Sun Q, Xu L, Xie X
and Song C: Variant in BCAR4 gene correlated with the breast cancer
susceptibility and mRNA expression of lncRNA BCAR4 in Chinese Han
population. Breast Cancer. 28:424–433. 2021.
|
60
|
Liang X, Zhao Y, Fang Z, Shao N, Zhai D,
Zhang M, Yu L and Shi Y: DLGAP1-AS2 promotes estrogen receptor
signalling and confers tamoxifen resistance in breast cancer. Mol
Biol Rep. 49:3939–3947. 2022.
|
61
|
Yuan H, Yan L, Wu M, Shang Y, Guo Q, Ma X,
Zhang X, Zhu Y, Wu Z, Lobie PE and Zhu T: Analysis of the Estrogen
Receptor-Associated LncRNA Landscape Identifies a Role for ERLC1 in
breast cancer progression. Cancer Res. 82:391–405. 2022.
|
62
|
Fang Z, Wang Y, Wang Z, Xu M, Ren S, Yang
D, Hong M and Xie W: ERINA Is an Estrogen-Responsive LncRNA That
Drives Breast Cancer through the E2F1/RB1 Pathway. Cancer Res.
80:4399–4413. 2020.
|
63
|
Yu S, Wang Y, Gong X, Fan Z, Wang Z, Liang
Z, Wu R, Cao B, Wang N, Bi C, et al: LncRNA AGPG confers endocrine
resistance in breast cancer by promoting E2F1 activity. Cancer Res.
Jul 28–2023.Epub ahead of print.
|
64
|
Horie K, Takagi K, Takeiwa T, Mitobe Y,
Kawabata H, Suzuki T, Ikeda K and Inoue S: Estrogen-Inducible
LncRNA BNAT1 functions as a modulator for estrogen receptor
signaling in endocrine-resistant breast cancer cells. Cells.
11:36102022.
|
65
|
Chen X, Ding JC, Hu GS, Shu XY, Liu Y, Du
J, Wen ZJ, Liu JY, Huang HH, Tang GH and Liu W: Estrogen-Induced
LncRNA, LINC02568, promotes estrogen receptor-positive breast
cancer development and drug resistance through both In Trans and In
Cis Mechanisms. Adv Sci (Weinh). 10:e22066632023.
|
66
|
Nanni S, Aiello A, Salis C, Re A, Cencioni
C, Bacci L, Pierconti F, Pinto F, Ripoli C, Ostano P, et al:
Metabolic reprogramming by malat1 depletion in prostate cancer.
Cancers (Basel). 13:152020.
|
67
|
Chakravarty D, Sboner A, Nair SS,
Giannopoulou E, Li R, Hennig S, Mosquera JM, Pauwels J, Park K,
Kossai M, et al: The oestrogen receptor alpha-regulated lncRNA
NEAT1 is a critical modulator of prostate cancer. Nat Commun.
5:53832014.
|
68
|
Bacci L, Aiello A, Ripoli C, Loria R,
Pugliese D, Pierconti F, Rotili D, Strigari L, Pinto F, Bassi PF,
et al: H19-Dependent transcriptional regulation of β3 and β4
Integrins Upon estrogen and hypoxia favors metastatic potential in
prostate cancer. Int J Mol Sci. 20:40122019.
|
69
|
Huang C, Wu M, Tang Y, Li X, Ouyang J,
Xiao L, Li D and Li G: NAG7 promotes human nasopharyngeal carcinoma
invasion through inhibition of estrogen receptor alpha and
up-regulation of JNK2/AP-1/MMP1 pathways. J Cell Physiol.
221:394–401. 2009.
|
70
|
Qiu JJ, Zhang XD, Tang XY, Zheng TT, Zhang
Y and Hua KQ: ElncRNA1, a long non-coding RNA that is
transcriptionally induced by oestrogen, promotes epithelial ovarian
cancer cell proliferation. Int J Oncol. 51:507–514. 2017.
|
71
|
Qiu J, Ye L, Ding J, Feng W, Zhang Y, Lv
T, Wang J and Hua K: Effects of oestrogen on long noncoding RNA
expression in oestrogen receptor alpha-positive ovarian cancer
cells. J Steroid Biochem Mol Biol. 141:60–70. 2014.
|
72
|
Chen Y, Gu Y, Gu Y and Wu J: Long
Noncoding RNA LINC00899/miR-944/ESR1 Axis regulates cervical cancer
cell proliferation, migration, and invasion. J Interferon Cytokine
Res. 41:220–233. 2021.
|
73
|
Cheng T, Bai Y, Huang S, Wang Y, Zhou S,
Liu H, Zhang R, Luo X and Yu P: Estrogen receptor 1 inhibits the
progression of hepatocellular carcinoma via positively regulating
lncRNA maternally expressed gene 3 under high glucose conditions. J
Gastrointest Oncol. 13:2485–2496. 2022.
|
74
|
Rochira V, Granata AR, Madeo B, Zirilli L,
Rossi G and Carani C: Estrogens in males: What have we learned in
the last 10 years? Asian J Androl. 7:3–20. 2005.
|
75
|
Girault I, Andrieu C, Tozlu S, Spyratos F,
Bièche I and Lidereau R: Altered expression pattern of
alternatively spliced estrogen receptor beta transcripts in breast
carcinoma. Cancer Lett. 215:101–112. 2004.
|
76
|
Tong D, Schuster E, Seifert M, Czerwenka
K, Leodolte S and Zeillinger R: Expression of estrogen receptor
beta isoforms in human breast cancer tissues and cell lines. Breast
Cancer Res Treat. 71:249–255. 2002.
|
77
|
Nanni S, Bacci L, Aiello A, Re A, Salis C,
Grassi C, Pontecorvi A, Gaetano C and Farsetti A: Signaling through
estrogen receptors modulates long non-coding RNAs in prostate
cancer. Mol Cell Endocrinol. 511:1108642020.
|
78
|
Piperigkou Z, Bouris P, Onisto M, Franchi
M, Kletsas D, Theocharis AD and Karamanos NK: Estrogen receptor
beta modulates breast cancer cells functional properties, signaling
and expression of matrix molecules. Matrix Biol. 56:4–23. 2016.
|
79
|
Mozdarani H, Ezzatizadeh V and Rahbar
Parvaneh R: The emerging role of the long non-coding RNA HOTAIR in
breast cancer development and treatment. J Transl Med.
18:1522020.
|
80
|
Ding J, Yeh CR, Sun Y, Lin C, Chou J, Ou
Z, Chang C, Qi J and Yeh S: Estrogen receptor β promotes renal cell
carcinoma progression via regulating LncRNA
HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene.
37:5037–5053. 2018.
|
81
|
He M, Yang H, Shi H, Hu Y, Chang C, Liu S
and Yeh S: Sunitinib increases the cancer stem cells and
vasculogenic mimicry formation via modulating the
lncRNA-ECVSR/ERβ/Hif2-α signaling. Cancer Lett. 524:15–28.
2022.
|
82
|
Chooniedass-Kothari S, Vincett D, Yan Y,
Cooper C, Hamedani MK, Myal Y and Leygue E: The protein encoded by
the functional steroid receptor RNA activator is a new modulator of
ER alpha transcriptional activity. FEBS Lett. 584:1174–1180.
2010.
|
83
|
Lin K, Zhan H, Ma J, Xu K, Wu R, Zhou C
and Lin J: Increased steroid receptor RNA activator protein (SRAP)
accompanied by decreased estrogen receptor-beta (ER-β) levels
during the malignant transformation of endometriosis associated
ovarian clear cell carcinoma. Acta Histochem. 116:878–882.
2014.
|
84
|
Li M, Chai HF, Peng F, Meng YT, Zhang LZ,
Zhang L, Zou H, Liang QL, Li MM, Mao KG, et al: Estrogen receptor β
upregulated by lncRNA-H19 to promote cancer stem-like properties in
papillary thyroid carcinoma. Cell Death Dis. 9:11202018.
|
85
|
Davey RA and Grossmann M: Androgen
receptor structure, function and biology: From bench to bedside.
Clin Biochem Rev. 37:3–15. 2016.
|
86
|
Wilson EM: Analysis of interdomain
interactions of the androgen receptor. Methods Mol Biol.
776:113–129. 2011.
|
87
|
van de Wijngaart DJ, Dubbink HJ, van Royen
ME, Trapman J and Jenster G: Androgen receptor coregulators:
Recruitment via the coactivator binding groove. Mol Cell
Endocrinol. 352:57–69. 2012.
|
88
|
Culig Z and Santer FR: Androgen receptor
signaling in prostate cancer. Cancer Metastasis Rev. 33:413–427.
2014.
|
89
|
Kumar S, Prajapati KS, Singh AK, Kushwaha
PP, Shuaib M and Gupta S: Long non-coding RNA regulating androgen
receptor signaling in breast and prostate cancer. Cancer Lett.
504:15–22. 2021.
|
90
|
Yang L, Lin C, Jin C, Yang JC, Tanasa B,
Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, et al:
lncRNA-dependent mechanisms of androgen-receptor-regulated gene
activation programs. Nature. 500:598–602. 2013.
|
91
|
Prensner JR, Sahu A, Iyer MK, Malik R,
Chandler B, Asangani IA, Poliakov A, Vergara IA, Alshalalfa M,
Jenkins RB, et al: The IncRNAs PCGEM1 and PRNCR1 are not implicated
in castration resistant prostate cancer. Oncotarget. 5:1434–1438.
2014.
|
92
|
Zhang A, Zhao JC, Kim J, Fong KW, Yang YA,
Chakravarti D, Mo YY and Yu J: LncRNA HOTAIR enhances the
androgen-receptor-mediated transcriptional program and drives
castration-resistant prostate cancer. Cell Rep. 13:209–221.
2015.
|
93
|
Li L, Dang Q, Xie H, Yang Z, He D, Liang
L, Song W, Yeh S and Chang C: Infiltrating mast cells enhance
prostate cancer invasion via altering LncRNA-HOTAIR/PRC2-androgen
receptor (AR)-MMP9 signals and increased stem/progenitor cell
population. Oncotarget. 6:14179–14190. 2015.
|
94
|
Ozgur E and Gezer U: Investigation of
lncRNA H19 in prostate cancer cells and secreted exosomes upon
androgen stimulation or androgen receptor blockage. Bratisl Lek
Listy. 121:362–365. 2020.
|
95
|
Warrick JI, Tomlins SA, Carskadon SL,
Young AM, Siddiqui J, Wei JT, Chinnaiyan AM, Kunju LP and
Palanisamy N: Evaluation of tissue PCA3 expression in prostate
cancer by RNA in situ hybridization-a correlative study with urine
PCA3 and TMPRSS2-ERG. Mod Pathol. 27:609–620. 2014.
|
96
|
Lemos AE, Ferreira LB, Batoreu NM, de
Freitas PP, Bonamino MH and Gimba ER: PCA3 long noncoding RNA
modulates the expression of key cancer-related genes in LNCaP
prostate cancer cells. Tumour Biol. 37:11339–11348. 2016.
|
97
|
Özgür E, Celik AI, Darendeliler E and
Gezer U: PCA3 silencing sensitizes prostate cancer cells to
enzalutamide-mediated androgen receptor blockade. Anticancer Res.
37:3631–3637. 2017.
|
98
|
Lv S, Pu X, Luo M, Wen H, Xu Z, Wei Q and
Dang Q: Long noncoding RNA GAS5 interacts and suppresses androgen
receptor activity in prostate cancer cells. Prostate. 81:893–901.
2021.
|
99
|
Zhou Y and Chen B: GAS5-mediated
regulation of cell signaling (Review). Mol Med Rep. 22:3049–3056.
2020.
|
100
|
Wang B, Xu W, Cai Y, Liu K, Wu J, Guo C
and Yuan C: The functional role of oncogenic LncRNA BCAR4 for
cancer outcome. Curr Pharm Des. 27:4107–4113. 2021.
|
101
|
Cai Z, Wu Y, Li Y, Ren J and Wang L: BCAR4
activates GLI2 signaling in prostate cancer to contribute to
castration resistance. Aging (Albany NY). 10:3702–3712. 2018.
|
102
|
Sakurai K, Reon BJ, Anaya J and Dutta A:
The lncRNA DRAIC/PCAT29 locus constitutes a tumor-suppressive
nexus. Mol Cancer Res. 13:828–838. 2015.
|
103
|
Saha S, Kiran M, Kuscu C, Chatrath A,
Wotton D, Mayo MW and Dutta A: Long Noncoding RNA DRAIC inhibits
prostate cancer progression by interacting with IKK to Inhibit
NF-κB Activation. Cancer Res. 80:950–963. 2020.
|
104
|
Malik R, Patel L, Prensner JR, Shi Y, Iyer
MK, Subramaniyan S, Carley A, Niknafs YS, Sahu A, Han S, et al: The
lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Mol
Cancer Res. 12:1081–1087. 2014.
|
105
|
Zhang Y, Pitchiaya S, Cieślik M, Niknafs
YS, Tien JC, Hosono Y, Iyer MK, Yazdani S, Subramaniam S, Shukla
SK, et al: Analysis of the androgen receptor-regulated lncRNA
landscape identifies a role for ARLNC1 in prostate cancer
progression. Nat Genet. 50:814–824. 2018.
|
106
|
Misawa A, Takayama K, Urano T and Inoue S:
Androgen-induced Long Noncoding RNA (lncRNA) SOCS2-AS1 promotes
cell growth and inhibits apoptosis in prostate cancer cells. J Biol
Chem. 291:17861–17880. 2016.
|
107
|
Fang Z, Xu C, Li Y, Cai X, Ren S, Liu H,
Wang Y, Wang F, Chen R, Qu M, et al: A feed-forward regulatory loop
between androgen receptor and PlncRNA-1 promotes prostate cancer
progression. Cancer Lett. 374:62–74. 2016.
|
108
|
Huang W, Su X, Yan W, Kong Z, Wang D,
Huang Y, Zhai Q, Zhang X, Wu H, Li Y, et al: Overexpression of
AR-regulated lncRNA TMPO-AS1 correlates with tumor progression and
poor prognosis in prostate cancer. Prostate. 78:1248–1261.
2018.
|
109
|
Takayama KI, Fujimura T, Suzuki Y and
Inoue S: Identification of long non-coding RNAs in advanced
prostate cancer associated with androgen receptor splicing factors.
Commun Biol. 3:3932020.
|
110
|
Dai X, Liu L, Liang Z, Guo K, Xu S and
Wang H: Silencing of lncRNA MALAT1 inhibits cell cycle progression
via androgen receptor signaling in prostate cancer cells. Pathol
Res Pract. 215:712–721. 2019.
|
111
|
Yao M, Shi X, Li Y, Xiao Y, Butler W,
Huang Y, Du L, Wu T, Bian X, Shi G, et al: LINC00675 activates
androgen receptor axis signaling pathway to promote
castration-resistant prostate cancer progression. Cell Death Dis.
11:6382020.
|
112
|
Li Z, Teng J, Jia Z, Zhang G and Ai X: The
long non-coding RNA PCAL7 promotes prostate cancer by strengthening
androgen receptor signaling. J Clin Lab Anal. 35:e236452021.
|
113
|
Shi Z, Chen J, Wumaner A and Li M, Liang C
and Li M: A novel long non-coding RNA PCLN16 facilitates androgen
receptor signaling in prostate cancer. Biochem Biophys Res Commun.
537:78–84. 2021.
|
114
|
Thomas PB, Jeffery P, Gahete MD, Whiteside
E, Walpole C, Maugham M, Jovanovic L, Gunter J, Williams E, Nelson
C, et al: The long non-coding RNA GHSROS reprograms prostate cancer
cell lines toward a more aggressive phenotype. Peer J.
9:e102802021.
|
115
|
Liu B, Qian D, Zhou W, Jiang H, Xiang Z
and Wu D: A Novel Androgen-Induced lncRNA FAM83H-AS1 Promotes
Prostate Cancer Progression via the miR-15a/CCNE2 Axis. Front
Oncol. 10:6203062021.
|
116
|
Zhang B, Zhang M, Shen C, Liu G, Zhang F,
Hou J and Yao W: LncRNA PCBP1-AS1-mediated AR/AR-V7
deubiquitination enhances prostate cancer enzalutamide resistance.
Cell Death Dis. 12:8562021.
|
117
|
Ghildiyal R, Sawant M, Renganathan A,
Mahajan K, Kim EH, Luo J, Dang HX, Maher CA, Feng FY and Mahajan
NP: Loss of Long Noncoding RNA NXTAR in prostate cancer augments
androgen receptor expression and enzalutamide resistance. Cancer
Res. 82:155–168. 2022.
|
118
|
Lu Y, Wan X, Huang W, Zhang L, Luo J, Li
D, Huang Y, Li Y and Xu Y: AC016745.3 regulates the transcription
of AR target genes by antagonizing NONO. Life (Basel).
11:12082021.
|
119
|
Huang W, Chen Q, Lu Y, Kong Z, Wan X,
Huang Y, Qiu M and Li Y: Androgen-Responsive Oncogenic lncRNA
RP11-1023L17.1 Enhances c-Myc protein stability in prostate cancer.
Int J Mol Sci. 23:122192022.
|
120
|
Zhou J, Anderson K, Bievre M, Ng S and
Bondy CA: Primate mammary gland insulin-like growth factor system:
Cellular localization and regulation by sex steroids. J Investig
Med. 49:47–55. 2001.
|
121
|
Dimitrakakis C and Bondy C: Androgens and
the breast. Breast Cancer Res. 11:2122009.
|
122
|
Hickey TE, Robinson JL, Carroll JS and
Tilley WD: Minireview: The androgen receptor in breast tissues:
Growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol.
26:1252–1267. 2012.
|
123
|
Burstein MD, Tsimelzon A, Poage GM,
Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK,
Hilsenbeck SG, Chang JC, et al: Comprehensive genomic analysis
identifies novel subtypes and targets of triple-negative breast
cancer. Clin Cancer Res. 21:1688–1698. 2015.
|
124
|
Collina F, Aquino G, Brogna M, Cipolletta
S, Buonfanti G, De Laurentiis M, Di Bonito M, Cantile M and Botti
G: LncRNA HOTAIR up-regulation is strongly related with lymph nodes
metastasis and LAR subtype of Triple Negative Breast Cancer. J
Cancer. 10:2018–2024. 2019.
|
125
|
Yang F, Shen Y, Zhang W, Jin J, Huang D,
Fang H, Ji W, Shi Y, Tang L, Chen W, et al: An androgen receptor
negatively induced long non-coding RNA ARNILA binding to miR-204
promotes the invasion and metastasis of triple-negative breast
cancer. Cell Death Differ. 25:2209–2220. 2018.
|
126
|
Leygue E: Steroid receptor RNA activator
(SRA1): Unusual bifaceted gene products with suspected relevance to
breast cancer. Nucl Recept Signal. 5:e0062007.
|
127
|
Huang G, Cao H, Liu G and Chen J: Role of
androgen receptor signaling pathway-related lncRNAs in the
prognosis and immune infiltration of breast cancer. Sci Rep.
12:206312022.
|
128
|
Xiong Y, Wang L, Li Y, Chen M, He W and Qi
L: The Long Non-Coding RNA XIST Interacted with MiR-124 to modulate
bladder cancer growth, invasion and migration by targeting androgen
receptor (AR). Cell Physiol Biochem. 43:405–418. 2017.
|
129
|
Wen L, Zhang X, Bian J, Han L, Huang H, He
M, Wei M and Wang P: The long non-coding RNA LINC00460 predicts the
prognosis and promotes the proliferation and migration of cells in
bladder urothelial carcinoma. Oncol Lett. 17:3874–3880. 2019.
|
130
|
Wu S, Zhang L, Deng J, Guo B, Li F, Wang
Y, Wu R, Zhang S, Lu J and Zhou Y: A novel micropeptide encoded by
Y-Linked LINC00278 links cigarette smoking and AR signaling in male
esophageal squamous cell carcinoma. Cancer Res. 80:2790–2803.
2020.
|
131
|
He SW, Xu C, Li YQ, Li YQ, Zhao Y, Zhang
PP, Lei Y, Liang YL, Li JY, Li Q, et al: AR-induced long non-coding
RNA LINC01503 facilitates proliferation and metastasis via the
SFPQ-FOSL1 axis in nasopharyngeal carcinoma. Oncogene.
39:5616–5632. 2020.
|
132
|
Schmidt K, Joyce CE, Buquicchio F, Brown
A, Ritz J, Distel RJ, Yoon CH and Novina CD: The lncRNA SLNCR1
Mediates Melanoma Invasion through a Conserved SRA1-like Region.
Cell Rep. 15:2025–2037. 2016.
|
133
|
Schmidt K, Carroll JS, Yee E, Thomas DD,
Wert-Lamas L, Neier SC, Sheynkman G, Ritz J and Novina CD: The
lncRNA SLNCR recruits the androgen receptor to EGR1-Bound genes in
melanoma and inhibits expression of tumor suppressor p21. Cell Rep.
27:2493–2507.e4. 2019.
|
134
|
Schmidt K, Weidmann CA, Hilimire TA, Yee
E, Hatfield BM, Schneekloth JS Jr, Weeks KM and Novina CD:
Targeting the Oncogenic Long Non-coding RNA SLNCR1 by blocking its
sequence-specific binding to the androgen receptor. Cell Rep.
30:541–554.e5. 2020.
|
135
|
Zhai W, Sun Y, Guo C, Hu G, Wang M, Zheng
J, Lin W, Huang Q, Li G, Zheng J and Chang C: LncRNA-SARCC
suppresses renal cell carcinoma (RCC) progression via altering the
androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ.
24:1502–1517. 2017.
|
136
|
Bai JY, Jin B, Ma JB, Liu TJ, Yang C,
Chong Y, Wang X, He D and Guo P: HOTAIR and androgen receptor
synergistically increase GLI2 transcription to promote tumor
angiogenesis and cancer stemness in renal cell carcinoma. Cancer
Lett. 498:70–79. 2021.
|
137
|
You B, Sun Y, Luo J, Wang K, Liu Q, Fang
R, Liu B, Chou F, Wang R, Meng J, et al: Androgen receptor promotes
renal cell carcinoma (RCC) vasculogenic mimicry (VM) via altering
TWIST1 nonsense-mediated decay through lncRNA-TANAR. Oncogene.
40:1674–1689. 2021.
|
138
|
Han H, Wang S, Meng J, Lyu G, Ding G, Hu
Y, Wang L, Wu L, Yang W, Lv Y, et al: Long noncoding RNA PART1
restrains aggressive gastric cancer through the epigenetic
silencing of PDGFB via the PLZF-mediated recruitment of EZH2.
Oncogene. 39:6513–6528. 2020.
|
139
|
Qin Z, Liu X, Li Z, Wang G, Feng Z, Liu Y,
Yang H, Tan C, Zhang Z and Li K: LncRNA LINC00667 aggravates the
progression of hepatocellular carcinoma by regulating androgen
receptor expression as a miRNA-130a-3p sponge. Cell Death Discov.
7:3872021.
|
140
|
D'Ambrosio DN, Clugston RD and Blaner WS:
Vitamin A metabolism: An update. Nutrients. 3:63–103. 2011.
|
141
|
Siddikuzzaman, Guruvayoorappan C and
Berlin Grace VM: All trans retinoic acid and cancer.
Immunopharmacol Immunotoxicol. 33:241–249. 2011.
|
142
|
Dawson MI and Xia Z: The retinoid X
receptors and their ligands. Biochim Biophys Acta. 1821:21–56.
2012.
|
143
|
Ghyselinck NB and Duester G: Retinoic acid
signaling pathways. Development. 146:dev1675022019.
|
144
|
Zhao H, Zhang X, Frazão JB, Condino-Neto A
and Newburger PE: HOX antisense lincRNA HOXA-AS2 is an apoptosis
repressor in all trans retinoic acid treated NB4 promyelocytic
leukemia cells. J Cell Biochem. 114:2375–2383. 2013.
|
145
|
El Hajj J, Nguyen E, Liu Q, Bouyer C,
Adriaenssens E, Hilal G and Ségal-Bendirdjian E: Telomerase
regulation by the long non-coding RNA H19 in human acute
promyelocytic leukemia cells. Mol Cancer. 17:852018.
|
146
|
Zheng C, Li X, Ren Y, Yin Z and Zhou B:
Long Noncoding RNA RAET1K Enhances CCNE1 expression and cell cycle
arrest of lung adenocarcinoma cell by sponging miRNA-135a-5p. Front
Genet. 10:13482020.
|
147
|
Hu L, Liu J, Meng Y, Zheng H, Ding C, Wang
H, Charwudzi A, Li M, Li J, Zhai Z and Xiong S: Long non-coding RNA
HOTAIR regulates myeloid differentiation through the upregulation
of p21 via miR-17-5p in acute myeloid leukaemia. RNA Biol.
18:1434–1444. 2021.
|
148
|
Wei S, Zhao M, Wang X, Li Y and Wang K:
PU.1 controls the expression of long noncoding RNA HOTAIRM1 during
granulocytic differentiation. J Hematol Oncol. 9:442016.
|
149
|
Chen ZH, Wang WT, Huang W, Fang K, Sun YM,
Liu SR, Luo XQ and Chen YQ: The lncRNA HOTAIRM1 regulates the
degradation of PML-RARA oncoprotein and myeloid cell
differentiation by enhancing the autophagy pathway. Cell Death
Differ. 24:212–224. 2017.
|
150
|
Tang D, Hu P, Zhu D, Luo Y, Chen M, Zhang
G and Wang Y: C/EBPα is indispensable for PML/RARα-mediated
suppression of long non-coding RNA NEAT1 in acute promyelocytic
leukemia cells. Aging (Albany NY). 13:13179–13194. 2021.
|
151
|
Pokorná M, Hudec M, Juříčková I, Vácha M,
Polívková Z, Kútna V, Pala J, Ovsepian SV, Černá M and O'Leary VB:
All-Trans retinoic acid fosters the multifarious U87MG cell line as
a model of glioblastoma. Brain Sci. 11:8122021.
|
152
|
Wang C, Zhao D, Wang K, Gao L, He Y, Wu H,
Ruan L, Chen W, Zhang D, Xia T, et al: All-Trans retinoic acid
rescues the tumor suppressive role of RAR-β by Inhibiting LncHOXA10
expression in gastric tumorigenesis. Nutr Cancer. 73:2065–2077.
2021.
|
153
|
Shan L, Liu W and Zhan Y: LncRNA HAND2-AS1
exerts anti-oncogenic effects on bladder cancer via restoration of
RARB as a sponge of microRNA-146. Cancer Cell Int. 21:3612021.
|
154
|
Fu L, Shi Z and Chen B: Deleted in
lymphocytic leukemia 2 induces retinoic acid receptor beta promoter
methylation and mitogen activated kinase-like protein activation to
enhance viability and mobility of colorectal cancer cells.
Bioengineered. 13:12847–12862. 2022.
|
155
|
Bikle DD: Vitamin D metabolism, mechanism
of action, and clinical applications. Chem Biol. 21:319–329.
2014.
|
156
|
Bikle DD, Jiang Y, Nguyen T, Oda Y and Tu
CL: Disruption of Vitamin D and Calcium signaling in keratinocytes
predisposes to skin cancer. Front Physiol. 7:2962016.
|
157
|
Jiang YJ and Bikle DD: LncRNA profiling
reveals new mechanism for VDR protection against skin cancer
formation. J Steroid Biochem Mol Biol. 144(Pt A): 87–90. 2014.
|
158
|
Kholghi Oskooei V, Geranpayeh L, Omrani MD
and Ghafouri-Fard S: Assessment of functional variants and
expression of long noncoding RNAs in vitamin D receptor signaling
in breast cancer. Cancer Manag Res. 10:3451–3462. 2018.
|
159
|
Gheliji T, Oskooei VK, Ashrafi Hafez A,
Taheri M and Ghafouri-Fard S: Evaluation of expression of vitamin D
receptor related lncRNAs in lung cancer. Noncoding RNA Res.
5:83–87. 2020.
|
160
|
Jin T, Guo Y and Huang Z, Zhang Q and
Huang Z, Zhang Y and Huang Z: Vitamin D inhibits the proliferation
of oral squamous cell carcinoma by suppressing lncRNA LUCAT1
through the MAPK pathway. J Cancer. 11:5971–5981. 2020.
|
161
|
Wang L, Zhou S and Guo B: Vitamin D
suppresses ovarian cancer growth and invasion by targeting long
Non-Coding RNA CCAT2. Int J Mol Sci. 21:23342020.
|
162
|
Fu Y, Katsaros D, Biglia N, Wang Z, Pagano
I, Tius M, Tiirikainen M, Rosser C, Yang H and Yu H: Vitamin D
receptor upregulates lncRNA TOPORS-AS1 which inhibits the
Wnt/β-catenin pathway and associates with favorable prognosis of
ovarian cancer. Sci Rep. 11:74842021.
|
163
|
Chen S, Bu D, Ma Y, Zhu J, Chen G, Sun L,
Zuo S, Li T, Pan Y, Wang X, et al: H19 overexpression induces
resistance to 1,25(OH)2D3 by Targeting VDR Through miR-675-5p in
colon cancer cells. Neoplasia. 19:226–236. 2017.
|
164
|
Timmermans S, Souffriau J and Libert C: A
general introduction to glucocorticoid biology. Front Immunol.
10:15452019.
|
165
|
Kino T, Hurt DE, Ichijo T, Nader N and
Chrousos GP: Noncoding RNA gas5 is a growth arrest- and
starvation-associated repressor of the glucocorticoid receptor. Sci
Signal. 3:ra82010.
|
166
|
Brent GA: Mechanisms of thyroid hormone
action. J Clin Invest. 122:3035–3043. 2012.
|
167
|
Aranda A: MicroRNAs and thyroid hormone
action. Mol Cell Endocrinol. 525:1111752021.
|
168
|
Huang PS, Chang CC, Wang CS and Lin KH:
Functional roles of non-coding RNAs regulated by thyroid hormones
in liver cancer. Biomed J. 44:272–284. 2021.
|
169
|
Lin YH, Wu MH, Huang YH, Yeh CT, Chi HC,
Tsai CY, Chuang WY, Yu CJ, Chung IH, Chen CY and Lin KH: Thyroid
hormone negatively regulates tumorigenesis through suppression of
BC200. Endocr Relat Cancer. 25:967–979. 2018.
|
170
|
Dai Q, Deng J, Zhou J, Wang Z, Yuan XF,
Pan S and Zhang HB: Long non-coding RNA TUG1 promotes cell
progression in hepatocellular carcinoma via regulating
miR-216b-5p/DLX2 axis. Cancer Cell Int. 20:82020.
|
171
|
Lin YH, Wu MH, Huang YH, Yeh CT and Lin
KH: TUG1 Is a Regulator of AFP and serves as prognostic marker in
Non-Hepatitis B Non-Hepatitis C hepatocellular carcinoma. Cells.
9:2622020.
|