Long non‑coding RNAs in gallbladder cancer: From mechanisms to therapeutic opportunities (Review)
- Authors:
- Yingjie He
- Xuezhi Du
- Fan Yuan
- Caigu Yan
- Ming Chen
- Lei Han
- Jinjin Sun
-
Affiliations: Key Laboratory of Post‑Neuroinjury Neuro‑repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China, Institute of Reproductive Medicine, Luoyang Maternal and Child Health Hospital, Luoyang, Henan 471000, P.R. China, Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China - Published online on: December 14, 2023 https://doi.org/10.3892/ijo.2023.5604
- Article Number: 16
This article is mentioned in:
Abstract
Piccolo G and Piozzi GN: Laparoscopic radical cholecystectomy for primary or incidental early gallbladder cancer: The new rules governing the treatment of gallbladder cancer. Gastroenterol Res Pract. 2017:85705022017. View Article : Google Scholar : PubMed/NCBI | |
Carriaga MT and Henson DE: Liver, gallbladder, extrahepatic bile ducts, and pancreas. Cancer. 75 (1 Suppl):S171–S190. 1995. View Article : Google Scholar | |
Ganeshan D, Kambadakone A, Nikolaidis P, Subbiah V, Subbiah IM and Devine C: Current update on gallbladder carcinoma. Abdom Radiol (NY). 46:2474–2489. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Sharma KL, Gupta A, Yadav A and Kumar A: Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J Gastroenterol. 23:3978–3998. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang YF, Feng FL, Zhao XH, Ye ZX, Zeng HP, Li Z, Jiang XQ and Peng ZH: Combined detection tumor markers for diagnosis and prognosis of gallbladder cancer. World J Gastroenterol. 20:4085–4092. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hundal R and Shaffer EA: Gallbladder cancer: Epidemiology and outcome. Clin Epidemiol. 6:99–109. 2014.PubMed/NCBI | |
Yao RW, Wang Y and Chen LL: Cellular functions of long noncoding RNAs. Nat Cell Biol. 21:542–551. 2019. View Article : Google Scholar : PubMed/NCBI | |
Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI | |
Johnsson P, Lipovich L, Grander D and Morris KV: Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 1840:1063–1071. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu XS, Wang XA, Wu WG, Hu YP, Li ML, Ding Q, Weng H, Shu YJ, Liu TY, Jiang L, et al: MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol Ther. 15:806–814. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ming H, Li B, Zhou L, Goel A and Huang C: Long non-coding RNAs and cancer metastasis: Molecular basis and therapeutic implications. Biochim Biophys Acta Rev Cancer. 1875:1885192021. View Article : Google Scholar : PubMed/NCBI | |
Perez-Moreno P, Riquelme I, Brebi P and Roa JC: Role of lncRNAs in the development of an aggressive phenotype in gallbladder cancer. J Clin Med. 10:42062021. View Article : Google Scholar : PubMed/NCBI | |
Lv Y, Yin W and Zhang Z: Non-coding RNAs as potential biomarkers of gallbladder cancer. Clin Transl Oncol. 25:1489–1511. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dawson MA and Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Zhang L, Han L, Huang L, Huang Y, Yang M and Zhang N: The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer. Oncogene. 42:3435–3445. 2023. View Article : Google Scholar : PubMed/NCBI | |
Roy L, Chatterjee O, Bose D, Roy A and Chatterjee S: Noncoding RNA as an influential epigenetic modulator with promising roles in cancer therapeutics. Drug Discov Today. 28:1036902023. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Li H, Yu Q, Xiao W and Wang DO: LncRNA-mediated DNA methylation: An emerging mechanism in cancer and beyond. J Exp Clin Cancer Res. 41:1002022. View Article : Google Scholar : PubMed/NCBI | |
Sina AA, Carrascosa LG, Liang Z, Grewal YS, Wardiana A, Shiddiky MJA, Gardiner RA, Samaratunga H, Gandhi MK, Scott RJ, et al: Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nat Commun. 9:49152018. View Article : Google Scholar : PubMed/NCBI | |
Li D, Feng J, Wu T, Wang Y, Sun Y, Ren J and Liu M: Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol. 182:64–70. 2013. View Article : Google Scholar : PubMed/NCBI | |
Song H, Chen L, Liu W, Xu X, Zhou Y, Zhu J, Chen X, Li Z and Zhou H: Depleting long noncoding RNA HOTAIR attenuates chronic myelocytic leukemia progression by binding to DNA methyltransferase 1 and inhibiting PTEN gene promoter methylation. Cell Death Dis. 12:4402021. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Jin L, Wang S, Zhou D, Wang J, Tang Z and Quan Z: Long non-coding RNA UCA1 promotes gallbladder cancer progression by epigenetically repressing p21 and E-cadherin expression. Oncotarget. 8:47957–47968. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin N, Yao Z, Xu M, Chen J, Lu Y, Yuan L, Zhou S, Zou X and Xu R: Long noncoding RNA MALAT1 potentiates growth and inhibits senescence by antagonizing ABI3BP in gallbladder cancer cells. J Exp Clin Cancer Res. 38:2442019. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Dai C, Yu X, Yin XB, Liao WJ, Huang Y and Zhou F: Silencing of long non-coding RNA FOXD2-AS1 inhibits the progression of gallbladder cancer by mediating methylation of MLH1. Gene Ther. 28:306–318. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Cai Q, Wang S, Wang S, Wang J and Quan Z: Long noncoding RNA PVT1 promoted gallbladder cancer proliferation by epigenetically suppressing miR-18b-5p via DNA methylation. Cell Death Dis. 11:8712020. View Article : Google Scholar : PubMed/NCBI | |
Li DQ, Ding YR, Che JH, Su Z, Yang WZ, Xu L, Li YJ, Wang HH and Zhou WY: Tumor suppressive lncRNA MEG3 binds to EZH2 and enhances CXCL3 methylation in gallbladder cancer. Neoplasma. 69:538–549. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee A, Rodger EJ and Eccles MR: Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol. 51:149–159. 2018. View Article : Google Scholar : PubMed/NCBI | |
Barik GK, Sahay O, Behera A, Naik D and Kalita B: Keep your eyes peeled for long noncoding RNAs: Explaining their boundless role in cancer metastasis, drug resistance, and clinical application. Biochim Biophys Acta Rev Cancer. 1876:1886122021. View Article : Google Scholar : PubMed/NCBI | |
Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, et al: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 106:11667–11672. 2009. View Article : Google Scholar : PubMed/NCBI | |
Laugesen A, Hojfeldt JW and Helin K: Role of the polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harb Perspect Med. 6:a0265752016. View Article : Google Scholar : PubMed/NCBI | |
Narlikar GJ, Sundaramoorthy R and Owen-Hughes T: Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 154:490–503. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bohmdorfer G and Wierzbicki AT: Control of chromatin structure by long noncoding RNA. Trends Cell Biol. 25:623–632. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Senturk N, Song C and Grummt I: lncRNA PAPAS tethered to the rDNA enhancer recruits hypophosphorylated CHD4/NuRD to repress rRNA synthesis at elevated temperatures. Genes Dev. 32:836–848. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Dammert MA, Grummt I and Bierhoff H: lncRNA-Induced nucleosome repositioning reinforces transcriptional repression of rRNA genes upon hypotonic stress. Cell Rep. 14:1876–1882. 2016. View Article : Google Scholar : PubMed/NCBI | |
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y and Lin H: Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol. 14:1692021. View Article : Google Scholar : PubMed/NCBI | |
Fatma H and Siddique HR: Role of long non-coding RNAs and MYC interaction in cancer metastasis: A possible target for therapeutic intervention. Toxicol Appl Pharmacol. 399:1150562020. View Article : Google Scholar : PubMed/NCBI | |
Lingadahalli S, Jadhao S, Sung YY, Chen M, Hu L, Chen X and Cheung E: Novel lncRNA LINC00844 regulates prostate cancer cell migration and invasion through AR signaling. Mol Cancer Res. 16:1865–1878. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li Z, Liu L, Wang Q, Li S, Chen D, Hu Z, Yu T, Ding J, Li J, et al: Long noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology. 67:171–187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang XZ, Liu H and Chen SR: Mechanisms of long non-coding RNAs in cancers and their dynamic regulations. Cancers (Basel). 12:12452020. View Article : Google Scholar : PubMed/NCBI | |
Saayman SM, Ackley A, Burdach J, Clemson M, Gruenert DC, Tachikawa K, Chivukula P, Weinberg MS and Morris KV: Long Non-coding RNA BGas regulates the cystic fibrosis transmembrane conductance regulator. Mol Ther. 24:1351–1357. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ahmad M, Weiswald LB, Poulain L, Denoyelle C and Meryet-Figuiere M: Involvement of lncRNAs in cancer cells migration, invasion and metastasis: Cytoskeleton and ECM crosstalk. J Exp Clin Cancer Res. 42:1732023. View Article : Google Scholar : PubMed/NCBI | |
He RZ, Luo DX and Mo YY: Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Dis. 6:6–15. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pan K and Xie Y: LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca(2+)-FAK signal pathway. Cell Death Dis. 11:4342020. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Liu Q, Hu Z, Zhou Z, Wang G, Li C, Xie W, Meng G, Xiang Y, Wu N, et al: Long non-coding RNA MUC5B-AS1 promotes metastasis through mutually regulating MUC5B expression in lung adenocarcinoma. Cell Death Dis. 9:4502018. View Article : Google Scholar : PubMed/NCBI | |
Di W, Weinan X, Xin L, Zhiwei Y, Xinyue G, Jinxue T and Mingqi L: Long noncoding RNA SNHG14 facilitates colorectal cancer metastasis through targeting EZH2-regulated EPHA7. Cell Death Dis. 10:5142019. View Article : Google Scholar : PubMed/NCBI | |
Wang A, Bao Y, Wu Z, Zhao T, Wang D, Shi J, Liu B, Sun S, Yang F, Wang L and Qu L: Long noncoding RNA EGFR-AS1 promotes cell growth and metastasis via affecting HuR mediated mRNA stability of EGFR in renal cancer. Cell Death Dis. 10:1542019. View Article : Google Scholar : PubMed/NCBI | |
Barbieri I and Kouzarides T: Role of RNA modifications in cancer. Nat Rev Cancer. 20:303–322. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Wu Z, Wang X, Wang Y, Hu X, Qin W, Lu S, Xu D, Wu Y, Chen Q, et al: LNC942 promoting METTL14-mediated m(6)A methylation in breast cancer cell proliferation and progression. Oncogene. 39:5358–5372. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hou P, Meng S, Li M, Li M, Lin T, Chu S, Li Z, Zheng J, Gu Y and Bai J: LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res. 40:522021. View Article : Google Scholar : PubMed/NCBI | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI | |
Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thomson DW and Dinger ME: Endogenous microRNA sponges: Evidence and controversy. Nat Rev Genet. 17:272–283. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang SH, Wu XC, Zhang MD, Weng MZ, Zhou D and Quan ZW: Long noncoding RNA H19 contributes to gallbladder cancer cell proliferation by modulated miR-194-5p targeting AKT2. Tumour Biol. 37:9721–9730. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang SH, Ma F, Tang ZH, Wu XC, Cai Q, Zhang MD, Weng MZ, Zhou D, Wang JD and Quan ZW: Long non-coding RNA H19 regulates FOXM1 expression by competitively binding endogenous miR-342-3p in gallbladder cancer. J Exp Clin Cancer Res. 35:1602016. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liu R, Wang Y, Zhu W, Zhao D, Wang X, Yang H, Gurley EC, Chen W, Hylemon PB and Zhou H: Cholangiocyte-Derived Exosomal lncRNA H19 promotes macrophage activation and hepatic inflammation under cholestatic conditions. Cells. 9:1902020. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Yan Y, Zhang G, Chen C, Shen W and Xing P: Knockdown of LINC01694 inhibits growth of gallbladder cancer cells via miR-340-5p/Sox4. Biosci Rep. 40:BSR201944442020. View Article : Google Scholar : PubMed/NCBI | |
Liu XF, Wang K and Du HC: LncRNA SNHG6 regulating Hedgehog signaling pathway and affecting the biological function of gallbladder carcinoma cells through targeting miR-26b-5p. Eur Rev Med Pharmacol Sci. 24:7598–7611. 2020.PubMed/NCBI | |
Wang SH, Zhang WJ, Wu XC, Zhang MD, Weng MZ, Zhou D, Wang JD and Quan ZW: Long non-coding RNA Malat1 promotes gallbladder cancer development by acting as a molecular sponge to regulate miR-206. Oncotarget. 7:37857–37867. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang SH, Zhang WJ, Wu XC, Weng MZ, Zhang MD, Cai Q, Zhou D, Wang JD and Quan ZW: The lncRNA MALAT1 functions as a competing endogenous RNA to regulate MCL-1 expression by sponging miR-363-3p in gallbladder cancer. J Cell Mol Med. 20:2299–2308. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, Xue C, Ren F, Ren Z, Li J, et al: Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 18:332019. View Article : Google Scholar : PubMed/NCBI | |
Liu K and Xu Q: LncRNA PVT1 regulates gallbladder cancer progression through miR-30d-5p. J Biol Regul Homeost Agents. 34:875–883. 2020.PubMed/NCBI | |
Zhong Y, Wu X, Li Q, Ge X, Wang F, Wu P, Deng X and Miao L: Long noncoding RNAs as potential biomarkers and therapeutic targets in gallbladder cancer: A systematic review and meta-analysis. Cancer Cell Int. 19:1692019. View Article : Google Scholar : PubMed/NCBI | |
Shi Y: Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol. 18:655–670. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ouyang J, Zhong Y, Zhang Y, Yang L, Wu P, Hou X, Xiong F, Li X, Zhang S, Gong Z, et al: Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br J Cancer. 126:1113–1124. 2022. View Article : Google Scholar : PubMed/NCBI | |
Su T, Zhang N, Wang T, Zeng J, Li W, Han L and Yang M: Super enhancer-regulated lncRNA LINC01089 induces alternative splicing of DIAPH3 to drive hepatocellular carcinoma metastasis. Cancer Res. Sep 26–2023.(Epub ahead of print). View Article : Google Scholar | |
Huang GW, Zhang YL, Liao LD, Li EM and Xu LY: Natural antisense transcript TPM1-AS regulates the alternative splicing of tropomyosin I through an interaction with RNA-binding motif protein 4. Int J Biochem Cell Biol. 90:59–67. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yap K, Mukhina S, Zhang G, Tan JSC, Ong HS and Makeyev EV: A short tandem repeat-enriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol Cell. 72:525–540. e132018. View Article : Google Scholar : PubMed/NCBI | |
Lavorgna G, Dahary D, Lehner B, Sorek R, Sanderson CM and Casari G: In search of antisense. Trends Biochem Sci. 29:88–94. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu X, Lin C, Jia X, Zhu H, Song J and Zhang Y: Noncoding RNAs regulate alternative splicing in Cancer. J Exp Clin Cancer Res. 40:112021. View Article : Google Scholar : PubMed/NCBI | |
Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H, Hu M, Zhu H and Yan GR: A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell. 68:171–184.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gordon MA, Babbs B, Cochrane DR, Bitler BG and Richer JK: The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2-mediated alternative splicing. Mol Carcinog. 58:196–205. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stamm S: Regulation of alternative splicing by reversible protein phosphorylation. J Biol Chem. 283:1223–1227. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hu ZY, Wang XY, Guo WB, Xie LY, Huang YQ, Liu YP, Xiao LW, Li SN, Zhu HF, Li ZG and Kan H: Long non-coding RNA MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation in colorectal cancer cells. Oncotarget. 7:11733–11743. 2016. View Article : Google Scholar : PubMed/NCBI | |
Micalizzi DS, Ebright RY, Haber DA and Maheswaran S: Translational regulation of cancer metastasis. Cancer Res. 81:517–524. 2021. View Article : Google Scholar : PubMed/NCBI | |
Karakas D and Ozpolat B: The Role of LncRNAs in translation. Noncoding RNA. 7:162021.PubMed/NCBI | |
Hardie DG, Ross FA and Hawley SA: AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 13:251–262. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xiao ZD, Han L, Zhang J, Lee SW, Wang W, Lee H, Zhuang L, Chen J, Lin HK, et al: LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol. 18:431–442. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhuo W, Liu Y, Li S, Guo D, Sun Q, Jin J, Rao X, Li M, Sun M, Jiang M, et al: Long Noncoding RNA GMAN, Up-regulated in Gastric Cancer Tissues, Is Associated With Metastasis in Patients and Promotes Translation of Ephrin A1 by Competitively Binding GMAN-AS. Gastroenterology. 156:676–691.e11. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Liu Y and Yu S: Long noncoding RNA AWPPH promotes hepatocellular carcinoma progression through YBX1 and serves as a prognostic biomarker. Biochim Biophys Acta Mol Basis Dis. 1863:1805–1816. 2017. View Article : Google Scholar : PubMed/NCBI | |
Verheyden Y, Goedert L and Leucci E: Control of nucleolar stress and translational reprogramming by lncRNAs. Cell Stress. 3:19–26. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jacob MD, Audas TE, Uniacke J, Trinkle-Mulcahy L and Lee S: Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus. Mol Biol Cell. 24:2943–2953. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xing YH, Yao RW, Zhang Y, Guo CJ, Jiang S, Xu G, Dong R, Yang L and Chen LL: SLERT Regulates DDX21 rings associated with Pol I transcription. Cell. 169:664–678.e16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vendramin R, Verheyden Y, Ishikawa H, Goedert L, Nicolas E, Saraf K, Armaos A, Delli Ponti R, Izumikawa K, Mestdagh P, et al: SAMMSON fosters cancer cell fitness by concertedly enhancing mitochondrial and cytosolic translation. Nat Struct Mol Biol. 25:1035–1046. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sonenberg N and Hinnebusch AG: Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell. 136:731–745. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu B and Qian SB: Translational reprogramming in cellular stress response. Wiley Interdiscip Rev RNA. 5:301–315. 2014. View Article : Google Scholar : PubMed/NCBI | |
Leppek K, Das R and Barna M: Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 19:158–174. 2018. View Article : Google Scholar : PubMed/NCBI | |
Beltran M, Puig I, Pena C, García JM, Alvarez AB, Peña R, Bonilla F and de Herreros AG: A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 22:756–769. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bernassola F, Chillemi G and Melino G: HECT-Type E3 ubiquitin ligases in cancer. Trends Biochem Sci. 44:1057–1075. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Liu C, Yao J, Wan H, Wan G, Li Y and Chen N: Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacol Res. 163:1053202021. View Article : Google Scholar : PubMed/NCBI | |
Han ZJ, Feng YH, Gu BH, Li YM and Chen H: The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 52:1081–1094. 2018.PubMed/NCBI | |
Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z and Shen F: Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci. 20:55732019. View Article : Google Scholar : PubMed/NCBI | |
Gao Z, Xu J, Fan Y, Qi Y, Wang S, Zhao S, Guo X, Xue H, Deng L, Zhao R, et al: PDIA3P1 promotes Temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition. J Exp Clin Cancer Res. 41:2232022. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Yang F, Li X, Gong ZJ and Wang LW: Long noncoding RNA LNC473 inhibits the ubiquitination of survivin via association with USP9X and enhances cell proliferation and invasion in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 499:702–710. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, Yao S, Jin G, Du J, Han W, et al: LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res. 24:4808–4819. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Han Z, Sun Z, Wang Y, Zheng M and Song C: LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. J Exp Clin Cancer Res. 37:2222018. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Jin Y, Wu P, Yang J, Chen Y, Yang Q, Huo X, Li J, De W, Chen J and Yang F: LINC00355 induces gastric cancer proliferation and invasion through promoting ubiquitination of P53. Cell Death Discov. 6:992020. View Article : Google Scholar : PubMed/NCBI | |
Wang ZQ, He CY, Hu L, Shi HP, Li JF, Gu QL, Su LP, Liu BY, Li C and Zhu Z: Long noncoding RNA UCA1 promotes tumour metastasis by inducing GRK2 degradation in gastric cancer. Cancer Lett. 408:10–21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Hou P, Fan D, Dong M, Ma M, Li H, Yao R, Li Y, Wang G, Geng P, et al: The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Differ. 24:59–71. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma MZ, Zhang Y, Weng MZ, Wang SH, Hu Y, Hou ZY, Qin YY, Gong W, Zhang YJ, Kong X, et al: Long Noncoding RNA GCASPC, a Target of miR-17-3p, negatively regulates pyruvate carboxylase-dependent cell proliferation in gallbladder cancer. Cancer Res. 76:5361–5371. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Cai Q, Wang S, Wang S, Mondal T, Wang J and Quan Z: Long noncoding RNA MEG3 regulates LATS2 by promoting the ubiquitination of EZH2 and inhibits proliferation and invasion in gallbladder cancer. Cell Death Dis. 9:10172018. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Wang S, Jin L, Weng M, Zhou D, Wang J, Tang Z and Quan Z: Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Mol Cancer. 18:822019. View Article : Google Scholar : PubMed/NCBI | |
Xue Z, Yang B, Xu Q, Zhu X and Qin G: Long non-coding RNA SSTR5-AS1 facilitates gemcitabine resistance via stabilizing NONO in gallbladder carcinoma. Biochem Biophys Res Commun. 522:952–959. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Li H, Zhu Y, Ma X, Shao Z, Yang Z, Cai C, Wu Z, Li M, Gong W and Wu X: LncRNA MNX1-AS1 sustains inactivation of Hippo pathway through a positive feedback loop with USP16/IGF2BP3 axis in gallbladder cancer. Cancer Lett. 547:2158622022. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Feng W, Zhang Y, Lei T, Wang X, Qiao T, Chen Z and Song W: RP11-789C1.1 inhibits gastric cancer cell proliferation and accelerates apoptosis via the ATR/CHK1 signaling pathway. Chin Med J (Engl). Oct 25–2023.(Epub ahead of print). | |
Zhou W, Feng Y, Lin C, Chao CK, He Z, Zhao S, Xue J, Zhao XY and Cao W: Yin Yang 1-Induced Long Noncoding RNA DUXAP9 drives the progression of oral squamous cell carcinoma by blocking CDK1-Mediated EZH2 Degradation. Adv Sci (Weinh). 10:e22075492023. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Ye Y, Chan LC, Li Y, Liang K, Lin A, Egranov SD, Zhang Y, Xia W, Gong J, et al: Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol. 20:835–851. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Liang K, Hu Q, Li P, Song J, Yang Y, Yao J, Mangala LS, Li C, Yang W, et al: JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. J Clin Invest. 127:4498–4515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Jian Z, Jin H, Wei X, Zou X, Guan R and Huang J: Long non-coding RNA DLGAP1-AS1 facilitates tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via the feedback loop of miR-26a/b-5p/IL-6/JAK2/STAT3 and Wnt/β-catenin pathway. Cell Death Dis. 11:342020. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Zhang R, Zhang C, Liang Y and Tang W: LncRNA LOXL1-AS1 promotes the proliferation and metastasis of medulloblastoma by activating the PI3K/AKT pathway. Anal Cell Pathol (Amst). 2018:92756852018.PubMed/NCBI | |
Zheng B, Wang J, Fan K, Sun W, Wan W, Gao Z, Ni X, Zhang D, Ni X, Suo T, et al: lncRNA RP11-147L13.8 suppresses metastasis and chemo-resistance by modulating the phosphorylation of c-Jun protein in GBC. Mol Ther Oncolytics. 23:124–137. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Kruse JP, Tang Y, Jung SY, Qin J and Gu W: Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 451:587–590. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Liu Y, Zhuang H, Yang B, Hei K, Xiao M, Hou C, Gao H, Zhang X, Jia C, et al: Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic Acids Res. 45:9947–9959. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Wang ZQ, Wang SH, Li C, Zhu ZG, Quan ZW and Zhang WJ: Upregulation of long non-coding RNA LINC00152 by SP1 contributes to gallbladder cancer cell growth and tumor metastasis via PI3K/AKT pathway. Am J Transl Res. 8:4068–4081. 2016.PubMed/NCBI | |
Yang L, Gao Q, Wu X, Feng F and Xu K: Long noncoding RNA HEGBC promotes tumorigenesis and metastasis of gallbladder cancer via forming a positive feedback loop with IL-11/STAT3 signaling pathway. J Exp Clin Cancer Res. 37:1862018. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Yang P, Han T, Wang RY, Xing XL, Si AF, Ma QY, Chen Z, Li HY and Zhang B: Long non-coding RNA DILC promotes the progression of gallbladder carcinoma. Gene. 694:102–110. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bao D, Yuan RX and Zhang Y: Effects of lncRNA MEG3 on proliferation and apoptosis of gallbladder cancer cells through regulating NF-κB signaling pathway. Eur Rev Med Pharmacol Sci. 24:6632–6638. 2020.PubMed/NCBI | |
Ma MZ, Kong X, Weng MZ, Zhang MD, Qin YY, Gong W, Zhang WJ and Quan ZW: Long non-coding RNA-LET is a positive prognostic factor and exhibits tumor-suppressive activity in gallbladder cancer. Mol Carcinog. 54:1397–1406. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang SH, Wu XC, Zhang MD, Weng MZ, Zhou D and Quan ZW: Upregulation of H19 indicates a poor prognosis in gallbladder carcinoma and promotes epithelial-mesenchymal transition. Am J Cancer Res. 6:15–26. 2015.PubMed/NCBI | |
Ma F, Wang SH, Cai Q, Zhang MD, Yang Y and Ding J: Overexpression of LncRNA AFAP1-AS1 predicts poor prognosis and promotes cells proliferation and invasion in gallbladder cancer. Biomed Pharmacother. 84:1249–1255. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu XC, Wang SH, Ou HH, Zhu B, Zhu Y, Zhang Q, Yang Y and Li H: The NmrA-like family domain containing 1 pseudogene Loc344887 is amplified in gallbladder cancer and promotes epithelial-mesenchymal transition. Chem Biol Drug Des. 90:456–463. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Shen ED, Liao MM, Hu YB, Wu K, Yang P, Zhou L and Chen WD: Expression and mechanisms of long non-coding RNA genes MEG3 and ANRIL in gallbladder cancer. Tumour Biol. 37:9875–9886. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang SH, Zhang MD, Wu XC, Weng MZ, Zhou D and Quan ZW: Overexpression of LncRNA-ROR predicts a poor outcome in gallbladder cancer patients and promotes the tumor cells proliferation, migration, and invasion. Tumour Biol. 37:12867–12875. 2016. View Article : Google Scholar : PubMed/NCBI | |
Niu JZ, Liang XC, Xu ZW, Li ZH, Li J, Meng Y and Sun ZW: Long non-coding RNA Linc00261 as a novel potential diagnostic and prognostic biomarker for gallbladder cancer. Transl Cancer Res. 9:6078–6085. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Li Z, Feng C, Jiang S, Zhang Z and Ma L: Multi-omics annotation of human long non-coding RNAs. Biochem Soc Trans. 48:1545–1556. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mas-Ponte D, Carlevaro-Fita J, Palumbo E, Hermoso Pulido T, Guigo R and Johnson R: LncATLAS database for subcellular localization of long noncoding RNAs. RNA. 23:1080–1087. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wen Y, Wu Y, Xu B, Lin J and Zhu H: Fasim-LongTarget enables fast and accurate genome-wide lncRNA/DNA binding prediction. Comput Struct Biotechnol J. 20:3347–3350. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li JH, Liu S, Zhou H, Qu LH and Yang JH: starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42(Database issue). D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Tian M, Zhang D, Zhuang Y, Li Z, Xie S and Sun K: Long Non-Coding RNA Myosin light chain kinase antisense 1 plays an oncogenic role in gallbladder carcinoma by promoting chemoresistance and proliferation. Cancer Manag Res. 13:6219–6230. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Li Y, Shao R, Hu Y and Gao H: LncRNA TTN-AS1 acts as a tumor promoter in gallbladder carcinoma by regulating miR-107/HMGA1 axis. World J Surg Oncol. 19:1632021. View Article : Google Scholar : PubMed/NCBI | |
Armaos A, Colantoni A, Proietti G, Rupert J and Tartaglia GG: catRAPID omics v2.0: Going deeper and wider in the prediction of protein-RNA interactions. Nucleic Acids Res 49(W1). W72–W79. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Wu J, Wu Y, Hu W, Fang Z, Wang Z, Jiang C and Li S: LncPep: A resource of translational evidences for lncRNAs. Front Cell Dev Biol. 10:7950842022. View Article : Google Scholar : PubMed/NCBI | |
Li JSY, Raghubar AM, Matigian NA, Ng MSY, Rogers NM and Mallett AJ: The utility of spatial transcriptomics for solid organ transplantation. Transplantation. 107:1463–1471. 2022. View Article : Google Scholar | |
Zhao X, Lan Y and Chen D: Exploring long non-coding RNA networks from single cell omics data. Comput Struct Biotechnol J. 20:4381–4389. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng LL, Xiong JH, Zheng WJ, Wang JH, Huang ZL, Chen ZR, Sun XY, Zheng YM, Zhou KR, Li B, et al: ColorCells: A database of expression, classification and functions of lncRNAs in single cells. Brief Bioinform. 22:bbaa3252021. View Article : Google Scholar : PubMed/NCBI | |
Aprile M, Costa V, Cimmino A and Calin GA: Emerging role of oncogenic long noncoding RNA as cancer biomarkers. Int J Cancer. 152:822–834. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811. 1998. View Article : Google Scholar : PubMed/NCBI | |
Robb GB, Brown KM, Khurana J and Rana TM: Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol. 12:133–137. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kanojia D, Garg M, Martinez J, M T A, Luty SB, Doan NB, Said JW, Forscher C, Tyner JW and Koeffler HP: Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets. J Hematol Oncol. 10:1732017. View Article : Google Scholar : PubMed/NCBI | |
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gutschner T, Hämmerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M, et al: The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73:1180–1189. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Shigdar S, Shamaileh HA, Gantier MP, Yin W, Xiang D, Wang L, Zhou SF, Hou Y, Wang P, et al: Challenges and opportunities for siRNA-based cancer treatment. Cancer Lett. 387:77–83. 2017. View Article : Google Scholar : PubMed/NCBI | |
Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR and Makvandi P: Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today. 38:1011192021. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, et al: Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym. 260:1178092021. View Article : Google Scholar : PubMed/NCBI | |
Sui Z and Sui X: Long non-coding RNA TMPO-AS1 promotes cell proliferation, migration, invasion and epithelial-to-mesenchymal transition in gallbladder carcinoma by regulating the microRNA-1179/E2F2 axis. Oncol Lett. 22:8552021. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Duarte A, Berk JL, Quan D, Mauermann ML, Schmidt HH, Polydefkis M, Waddington-Cruz M, Ueda M, Conceição IM, Kristen AV, et al: Analysis of autonomic outcomes in APOLLO, a phase III trial of the RNAi therapeutic patisiran in patients with hereditary transthyretin-mediated amyloidosis. J Neurol. 267:703–712. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zorde Khvalevsky E, Gabai R, Rachmut IH, Horwitz E, Brunschwig Z, Orbach A, Shemi A, Golan T, Domb AJ, Yavin E, et al: Mutant KRAS is a druggable target for pancreatic cancer. Proc Natl Acad Sci USA. 110:20723–20728. 2013. View Article : Google Scholar : PubMed/NCBI | |
Springfeld C, Jäger D, Büchler MW, Strobel O, Hackert T, Palmer DH and Neoptolemos JP: Chemotherapy for pancreatic cancer. Presse Med. 48((3 Pt 2)): e159–e174. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bennett CF and Swayze EE: RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol. 50:259–293. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A and Bahal R: Antisense oligonucleotides: An emerging area in drug discovery and development. J Clin Med. 9:20042020. View Article : Google Scholar : PubMed/NCBI | |
Pandya G, Kirtonia A, Sethi G, Pandey AK and Garg M: The implication of long non-coding RNAs in the diagnosis, pathogenesis and drug resistance of pancreatic ductal adenocarcinoma and their possible therapeutic potential. Biochim Biophys Acta Rev Cancer. 1874:1884232020. View Article : Google Scholar : PubMed/NCBI | |
Arun G, Diermeier S, Akerman M, Chang KC, Wilkinson JE, Hearn S, Kim Y, MacLeod AR, Krainer AR, Norton L, et al: Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 30:34–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
Matsui M and Corey DR: Non-coding RNAs as drug targets. Nat Rev Drug Discov. 16:167–179. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maruyama R and Yokota T: Knocking down long noncoding RNAs using antisense oligonucleotide gapmers. Methods Mol Biol. 2176:49–56. 2020. View Article : Google Scholar : PubMed/NCBI | |
Orafidiya F, Deng L, Bevan CL and Fletcher CE: Crosstalk between Long Non Coding RNAs, microRNAs and DNA damage repair in prostate cancer: New therapeutic opportunities? Cancers (Basel). 14:7552022. View Article : Google Scholar : PubMed/NCBI | |
Lennox KA and Behlke MA: Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 44:863–877. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Lin J, Fang H, Fang J, Li C, Chen W, Liu S, Ondrejka S, Gong Z, Reu F, et al: Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia. 32:2250–2262. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, Abdelmohsen K and Gorospe M: Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 34:9–14. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG and Gorospe M: LincRNA-p21 suppresses target mRNA translation. Mol Cell. 47:648–655. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yokobayashi Y: High-Throughput analysis and engineering of ribozymes and deoxyribozymes by sequencing. Acc Chem Res. 53:2903–2912. 2020. View Article : Google Scholar : PubMed/NCBI | |
Silverman SK: Catalytic DNA: Scope, applications, and biochemistry of deoxyribozymes. Trends Biochem Sci. 41:595–609. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Qi F, Gao F, Cao H, Xu D, Salehi-Ashtiani K and Kapranov P: Hovlinc is a recently evolved class of ribozyme found in human lncRNA. Nat Chem Biol. 17:601–607. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337:816–821. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE and Church GM: RNA-guided human genome engineering via Cas9. Science. 339:823–826. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F and Nureki O: Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 156:935–949. 2014. View Article : Google Scholar : PubMed/NCBI | |
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S and Tessier-Lavigne M: Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 533:125–129. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hustedt N and Durocher D: The control of DNA repair by the cell cycle. Nat Cell Biol. 19:1–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang H, La Russa M and Qi LS: CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 85:227–264. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Nangia-Makker P, Farhana L and Majumdar APN: A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol Cancer. 16:1552017. View Article : Google Scholar : PubMed/NCBI | |
Peng WX, Huang JG, Yang L, Gong AH and Mo YY: Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Mol Cancer. 16:1612017. View Article : Google Scholar : PubMed/NCBI | |
Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Parag S, Patel R, Lui A, Murr M, Cai J and Patel NA: Stabilization of lncRNA GAS5 by a small molecule and its implications in diabetic adipocytes. Cell Chem Biol. 26:319–330. e62019. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Wang YF, Zhang J, Wang QX, Han L, Mei M and Kang CS: Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clin Epigenetics. 11:292019. View Article : Google Scholar : PubMed/NCBI | |
Termini D, Den Hartogh DJ, Jaglanian A and Tsiani E: Curcumin against prostate cancer: Current evidence. Biomolecules. 10:15362020. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Chi H, Chen J, Chen C, Huang Y, Xi H, Xue J and Si Y: Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene. 631:29–38. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao XM, Ren JJ, Du WH, Hao HS, Wang D, Liu Y, Qin T and Zhu HB: Effect of 5-aza-2′-deoxycytidine on methylation of the putative imprinted control region of H19 during the in vitro development of vitrified bovine two-cell embryos. Fertil Steril. 98:222–227. 2012. View Article : Google Scholar : PubMed/NCBI | |
Watrin M, Dausse E, Lebars I, Rayner B, Bugaut A and Toulme JJ: Aptamers targeting RNA molecules. Methods Mol Biol. 535:79–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Famulok M, Hartig JS and Mayer G: Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev. 107:3715–3743. 2007. View Article : Google Scholar : PubMed/NCBI | |
Keefe AD, Pai S and Ellington A: Aptamers as therapeutics. Nat Rev Drug Discov. 9:537–550. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang YL, Chang LC, Chen KB and Wang SC: Aptamer-guided targeting of the intracellular long-noncoding RNA HOTAIR. Am J Cancer Res. 11:945–954. 2021.PubMed/NCBI | |
Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Wang R, Shang F, Ma R, Rong Y and Zhang Y: Functional micropeptides encoded by long non-coding RNAs: A comprehensive review. Front Mol Biosci. 9:8175172022. View Article : Google Scholar : PubMed/NCBI | |
Eisenberg L, Eisenberg-Bord M, Eisenberg-Lerner A and Sagi-Eisenberg R: Metabolic alterations in the tumor microenvironment and their role in oncogenesis. Cancer Lett. 484:65–71. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Suo C, Li ST, Zhang H and Gao P: Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer. 1870:51–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Wang D, Wei J, Tang N, Tang L, Xiong F, Guo C, Zhou M, Li X, Li G, et al: Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance. Cell Mol Life Sci. 78:173–193. 2021. View Article : Google Scholar : PubMed/NCBI | |
Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV, Rittenhouse NL, DePeaux K, Whetstone RD, et al: Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 591:645–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, Cui X, He Y, Xiang W, Han Q, et al: NAD(+) metabolism maintains inducible PD-L1 expression to drive tumor immune evasion. Cell Metab. 33:110–127. e52021. View Article : Google Scholar : PubMed/NCBI | |
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and Ma W: ceRNA in cancer: Possible functions and clinical implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
van Niel G, D'Angelo G and Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu W, Liu C, Bi ZY, Zhou Q, Zhang H, Li LL, Zhang J, Zhu W, Song YY, Zhang F, et al: Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Mol Cancer. 19:1022020. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Ren J, Zhang D, Li Y, Huang X, Hu Q, Wang H, Song Y, Ni Y and Hou Y: A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of oral squamous cell carcinoma via LncRNA-CAF/interleukin-33. Carcinogenesis. 39:397–406. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khandelwal A, Malhotra A, Jain M, Vasquez KM and Jain A: The emerging role of long non-coding RNA in gallbladder cancer pathogenesis. Biochimie. 132:152–160. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rana V, Parama D, Khatoon E, Girisa S, Sethi G and Kunnumakkara AB: Reiterating the emergence of noncoding RNAs as regulators of the critical hallmarks of gall bladder cancer. Biomolecules. 11:18472021. View Article : Google Scholar : PubMed/NCBI | |
Dey Ghosh R and Guha Majumder S: Circulating long non-coding RNAs could be the potential prognostic biomarker for liquid biopsy for the clinical management of oral squamous cell carcinoma. Cancers (Basel). 14:55902022. View Article : Google Scholar : PubMed/NCBI | |
Anand P and Stahel VP: Review the safety of Covid-19 mRNA vaccines: A review. Patient Saf Surg. 15:202021. View Article : Google Scholar : PubMed/NCBI |