Nuclear miRNAs as transcriptional regulators in processes related to various cancers (Review)
- Authors:
- Ziqiang Wang
- Yu Zhang
- Kun Li
-
Affiliations: Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China - Published online on: April 9, 2024 https://doi.org/10.3892/ijo.2024.5644
- Article Number: 56
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
This article is mentioned in:
Abstract
Omer AD, Janas MM and Novina CD: The chicken or the egg: microRNA-mediated regulation of mRNA translation or mRNA stability. Mol Cell. 35:739–740. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wightman B, Ha I and Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Lu Y, Zhang X, Ren X, Wang Y, Li Z, Xu C and Han J: Serum microRNA is a promising biomarker for osteogenesis imperfecta. Intractable Rare Dis Res. 1:81–85. 2012.PubMed/NCBI | |
Wang ZQ, Lu YQ and Han JX: MicroRNAs: Important mediators of ossification. Chin Med J (Engl). 125:4111–4116. 2012.PubMed/NCBI | |
Wang Z, Li K, Wang X and Huang W: MiR-155-5p modulates HSV-1 replication via the epigenetic regulation of SRSF2 gene expression. Epigenetics. 14:494–503. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li K, Yao T, Zhang Y, Li W and Wang Z: NEAT1 as a competing endogenous RNA in tumorigenesis of various cancers: Role, mechanism and therapeutic potential. Int J Biol Sci. 17:3428–3440. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li K and Wang Z: Non-coding RNAs: Key players in T cell exhaustion. Front Immunol. 13:9597292022. View Article : Google Scholar : PubMed/NCBI | |
Li K, Yao T and Wang Z: lncRNA-mediated ceRNA network in bladder cancer. Noncoding RNA Res. 8:135–145. 2022. View Article : Google Scholar | |
Wang Z, Lu Y and Han J: Peripheral blood microRNAs: A novel tool for diagnosing disease? Intractable Rare Dis Res. 1:98–102. 2012.PubMed/NCBI | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI | |
Taft RJ, Simons C, Nahkuri S, Oey H, Korbie DJ, Mercer TR, Holst J, Ritchie W, Wong JJL, Rasko JEJ, et al: Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol. 17:1030–1034. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matsui M, Chu Y, Zhang H, Gagnon KT, Shaikh S, Kuchimanchi S, Manoharan M, Corey DR and Janowski BA: Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res. 41:10086–10109. 2013. View Article : Google Scholar : PubMed/NCBI | |
Place RF, Li LC, Pookot D, Noonan EJ and Dahiya R: MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA. 105:1608–1613. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zou Q, Liang Y, Luo H and Yu W: miRNA-mediated RNAa by targeting enhancers. Adv Exp Med Biol. 983:113–125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Aaltonen K, Amini RM, Heikkilä P, Aittomäki K, Tamminen A, Nevanlinna H and Blomqvist C: High cyclin B1 expression is associated with poor survival in breast cancer. Br J Cancer. 100:1055–1060. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Yan R, Krämer A, Eckerdt F, Roller M, Kaufmann M and Strebhardt K: Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene. 23:5843–5852. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, Yu A, Shuman M, Yu J and Li LC: Upregulation of cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res. 40:1695–1707. 2012. View Article : Google Scholar : | |
Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y, Deng G and Dahiya R: MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer. 116:5637–5649. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wang C, Yu X, Wu H, Hu J, Wang S and Ye Z: miR-3619-5p inhibits prostate cancer cell growth by activating CDKN1A expression. Oncol Rep. 37:241–248. 2017. View Article : Google Scholar | |
Zhang Q, Yang X, Luo L, Ma X, Jiao W, Li B, Zhang M, Zhao K and Niu H: Targeted p21 activation by a new double stranded RNA suppresses human prostate cancer cells growth and metastasis. Am J Transl Res. 12:4175–4188. 2020.PubMed/NCBI | |
Dobruch J and Oszczudłowski M: Bladder cancer: Current challenges and future directions. Medicina (Kaunas). 57:7492021. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhu Y, Liang Z, Wang X, Meng S, Xu X, Xu X, Wu J, Ji A, Hu Z, et al: Up-regulation of p16 by miR-877-3p inhibits proliferation of bladder cancer. Oncotarget. 7:51773–51783. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liggett WH Jr and Sidransky D: Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 16:1197–1206. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen Z, Ge Q, Hu J, Li F, Hu J, Xu H, Ye Z and Li LC: Up-regulation of p21(WAF1/CIP1) by miRNAs and its implications in bladder cancer cells. FEBS Lett. 588:4654–4664. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T, Takatsuka Y, Matsuyoshi N, Hirano S, Takeichi M, et al: Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res. 53:1696–1701. 1993.PubMed/NCBI | |
Zhang Q, Wang C, Miao S, Li C, Chen Z and Li F: Enhancing E-cadherin expression via promoter-targeted miR-373 suppresses bladder cancer cells growth and metastasis. Oncotarget. 8:93969–93983. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siddiqi A, Rani M, Bansal P and Rizvi MMA: Renal cell carcinoma management: A step to nano-chemoprevention. Life Sci. 308:1209222022. View Article : Google Scholar : PubMed/NCBI | |
Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, Kuczyk MA, Lam T, Marconi L, Merseburger AS, et al: EAU guidelines on renal cell carcinoma: 2014 Update. Eur Urol. 67:913–924. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Tang K, Li Z, Chen Z, Xu H and Ye Z: Targeted p21(WAF1/CIP1) activation by miR-1236 inhibits cell proliferation and correlates with favorable survival in renal cell carcinoma. Urol Oncol. 34:59.e23–e34. 2016. View Article : Google Scholar | |
Ju D, Liang Y, Hou G, Zheng W, Zhang G, Dun X, Wei D, Yan F, Zhang L, Lai D, et al: FBP1/miR-24-1/enhancer axis activation blocks renal cell carcinoma progression via Warburg effect. Front Oncol. 12:9283732022. View Article : Google Scholar | |
Treger TD, Chowdhury T, Pritchard-Jones K and Behjati S: The genetic changes of Wilms tumour. Nat Rev Nephrol. 15:240–251. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, Lu J, Shioda T, Vasudevan S, Ramaswamy S, et al: The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev. 27:2543–2548. 2013. View Article : Google Scholar : PubMed/NCBI | |
Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, Jemal A and Siegel RL: Breast cancer statistics, 2022. CA Cancer J Clin. 72:524–541. 2022. View Article : Google Scholar : PubMed/NCBI | |
Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL and Siegel RL: Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 69:363–385. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Zhang B, Wu T, Skogerbø G, Zhu X, Guo X, He S and Chen R: Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol. 10:122009. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Lu Q, Li W, Zhang D, Zhang F, Zou Q, Chen L, Tong Y, Liu M, Wang S, et al: Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 49:8556–8572. 2021. View Article : Google Scholar : PubMed/NCBI | |
Seviour EG, Sehgal V, Lu Y, Luo Z, Moss T, Zhang F, Hill SM, Liu W, Maiti SN, Cooper L, et al: Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer. Oncogene. 35:691–701. 2016. View Article : Google Scholar | |
Coburn SB, Bray F, Sherman ME and Trabert B: International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer. 140:2451–2460. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cui C, Han S, Yin H, Luo B, Shen X, Yang F, Liu Z, Zhu Q, Li D and Wang Y: FOXO3 is expressed in ovarian tissues and acts as an apoptosis initiator in granulosa cells of chickens. Biomed Res Int. 2019:69029062019. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Pan B, Zhan X, Silver H and Li J: MicroRNA 195-5p targets Foxo3 promoter region to regulate its expression in granulosa cells. Int J Mol Sci. 22:67212021. View Article : Google Scholar : PubMed/NCBI | |
Chaluvally-Raghavan P, Jeong KJ, Pradeep S, Silva AM, Yu S, Liu W, Moss T, Rodriguez-Aguayo C, Zhang D, Ram P, et al: Direct upregulation of STAT3 by MicroRNA-551b-3p deregulates growth and metastasis of ovarian cancer. Cell Rep. 15:1493–1504. 2016. View Article : Google Scholar : PubMed/NCBI | |
Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL and Barnholtz-Sloan JS: Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 71:381–406. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Zhang G, Bai Z, Yan Y, Song X, Zhao X, Yang P and Zhang Z: Low-intensity ultrasound: A novel technique for adjuvant treatment of gliomas. Biomed Pharmacother. 153:1133942022. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen Q, Li S, Li S, Zhao Z, Gao H, Wang X, Li B, Zhang W, Yuan Y, et al: Dual inhibition of PCDH9 expression by miR-215-5p up-regulation in gliomas. Oncotarget. 8:10287–10297. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheung NK and Dyer MA: Neuroblastoma: Developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. 13:397–411. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qiu B and Matthay KK: Advancing therapy for neuroblastoma. Nat Rev Clin Oncol. 19:515–533. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gomez RL, Ibragimova S, Ramachandran R, Philpott A and Ali FR: Tumoral heterogeneity in neuroblastoma. Biochim Biophys Acta Rev Cancer. 1877:1888052022. View Article : Google Scholar : PubMed/NCBI | |
Johnsen JI, Dyberg C and Wickström M: Neuroblastoma-a neural crest derived embryonal malignancy. Front Mol Neurosci. 12:92019. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Miao L, Lin H, Cheng J, Li M, Zhuo Z and He J: Targeting RAS in neuroblastoma: Is it possible? Pharmacol Ther. 236:1080542022. View Article : Google Scholar | |
Xiang X, Mei H, Qu H, Zhao X, Li D, Song H, Jiao W, Pu J, Huang K, Zheng L and Tong Q: miRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim Biophys Acta. 1852:1743–1754. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiang X, Mei H, Zhao X, Pu J, Li D, Qu H, Jiao W, Zhao J, Huang K, Zheng L and Tong Q: miRNA-337-3p suppresses neuroblastoma progression by repressing the transcription of matrix metalloproteinase 14. Oncotarget. 6:22452–22466. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mei H, Lin ZY and Tong QS: The roles of microRNAs in neuroblastoma. World J Pediatr. 10:10–16. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qu H, Zheng L, Pu J, Mei H, Xiang X, Zhao X, Li D, Li S, Mao L, Huang K and Tong Q: miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet. 24:2539–2551. 2015. View Article : Google Scholar : PubMed/NCBI | |
PDQ Adult Treatment Editorial Board: Colon Cancer Treatment (PDQ®): Patient version. 2022 Apr 6. PDQ Cancer Information Summaries (Internet) Bethesda (MD): National Cancer Institute (US); 2002 | |
Abbas T and Dutta A: p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer. 9:400–414. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kang MR, Park KH, Yang JO, Lee CW, Oh SJ, Yun J, Lee MY, Han SB and Kang JS: miR-6734 Up-regulates p21 gene expression and induces cell cycle arrest and apoptosis in colon cancer cells. PLoS One. 11:e01609612016. View Article : Google Scholar : PubMed/NCBI | |
Watari J, Chen N, Amenta PS, Fukui H, Oshima T, Tomita T, Miwa H, Lim KJ and Das KM: Helicobacter pylori associated chronic gastritis, clinical syndromes, precancerous lesions, and pathogenesis of gastric cancer development. World J Gastroenterol. 20:5461–5473. 2014. View Article : Google Scholar : PubMed/NCBI | |
He L, Chu D, Li X, Zheng J, Liu S, Li J, Zhao Q and Ji G: Matrix metalloproteinase-14 is a negative prognostic marker for patients with gastric cancer. Dig Dis Sci. 58:1264–1270. 2013. View Article : Google Scholar : PubMed/NCBI | |
Imanishi Y, Fujii M, Tokumaru Y, Tomita T, Kanke M, Kanzaki J, Kameyama K, Otani Y and Sato H: Clinical significance of expression of membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 in human head and neck squamous cell carcinoma. Hum Pathol. 31:895–904. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Jiao W, Mei H, Song H, Li D, Xiang X, Chen Y, Yang F, Li H, Huang K and Tong Q: miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget. 7:40314–40328. 2016. View Article : Google Scholar : PubMed/NCBI | |
Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M, et al: Heparanase expression correlates with invasion and poor prognosis in gastric cancers. Lab Invest. 83:613–622. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ and Parish CR: Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med. 5:803–809. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Jiao W, Song H, Qu H, Li D, Mei H, Chen Y, Yang F, Li H, Huang K and Tong Q: miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death Dis. 7:e23822016. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Li N, Wang S, Zhang F, Wei W, Li N, Bi N, Wang Z and He J: Lung cancer in People's Republic of China. J Thorac Oncol. 15:1567–1576. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Ge Q, Liu J, Zhang Q, Wang C, Cui K and Chen Z: Effects of miR-1236-3p and miR-370-5p on activation of p21 in various tumors and its inhibition on the growth of lung cancer cells. Tumour Biol. 39:10104283177108242017. View Article : Google Scholar : PubMed/NCBI | |
Liu ZG, Jiang G, Tang J, Wang H, Feng G, Chen F, Tu Z, Liu G, Zhao Y, Peng MJ, et al: c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma. Oncotarget. 7:65946–65956. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li S, Qiao S, Li N and Zhu X: MiR-744 functions as an oncogene through direct binding to c-Fos promoter and facilitates non-small cell lung cancer progression. Ann Surg Oncol. 29:1465–1475. 2022. View Article : Google Scholar | |
Li H, Da D, Yu W, Chen L, Yang S, Zhang B, Wang Y, Li L and Dang C: Tumor suppressor genes are reactivated by miR-26A1 via enhancer reprogramming in NSCLC. Hum Mol Genet. 32:79–92. 2023. View Article : Google Scholar : | |
Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y and Ma J: Nasopharyngeal carcinoma. Lancet. 394:64–80. 2019. View Article : Google Scholar : PubMed/NCBI | |
McDermott AL, Dutt SN and Watkinson JC: The aetiology of nasopharyngeal carcinoma. Clin Otolaryngol Allied Sci. 26:82–92. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Zhu X, Wang J, Li N, Li D, Sakib N, Sha Z and Song W: MiR-744 functions as a proto-oncogene in nasopharyngeal carcinoma progression and metastasis via transcriptional control of ARHGAP5. Oncotarget. 6:13164–13175. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fares J, Fares MY, Khachfe HH, Salhab HA and Fares Y: Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther. 5:282020. View Article : Google Scholar : PubMed/NCBI | |
Li K and Wang Z: lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res Rev. 86:1018782023. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Wang Y, Liao W, Zhang S, Wang S, Xu N, Xie W, Luo C, Wang Y, Wang Z and Zhang Y: Down-regulation of EPB41L4A-AS1 mediated the brain aging and neurodegenerative diseases via damaging synthesis of NAD+ and ATP. Cell Biosci. 11:1922021. View Article : Google Scholar | |
Li K and Wang Z: Speckles and paraspeckles coordinate to regulate HSV-1 genes transcription. Commun Biol. 4:12072021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhang S and Li K: LncRNA NEAT1 induces autophagy through epigenetic regulation of autophagy-related gene expression in neuroglial cells. J Cell Physiol. 237:824–832. 2022. View Article : Google Scholar | |
Zhao Y, Wang Z, Mao Y, Li B, Zhu Y, Zhang S, Wang S, Jiang Y, Xu N, Xie Y, et al: NEAT1 regulates microtubule stabilization via FZD3/GSK3β/P-tau pathway in SH-SY5Y cells and APP/PS1 mice. Aging (Albany NY). 12:23233–23250. 2020.PubMed/NCBI | |
Wang Z, Zhao Y, Xu N, Zhang S, Wang S, Mao Y, Zhu Y, Li B, Jiang Y, Tan Y, et al: NEAT1 regulates neuroglial cell mediating Aβ clearance via the epigenetic regulation of endocytosis-related genes expression. Cell Mol Life Sci. 76:3005–3018. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhao Y and Zhang Y: Viral lncRNA: A regulatory molecule for controlling virus life cycle. Noncoding RNA Res. 2:38–44. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Fan P, Zhao Y, Zhang S, Lu J, Xie W, Jiang Y, Lei F, Xu N and Zhang Y: NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription. Cell Mol Life Sci. 74:1117–1131. 2017. View Article : Google Scholar : | |
Wang Z, Li K and Huang W: Long non-coding RNA NEAT1-centric gene regulation. Cell Mol Life Sci. 77:3769–3779. 2020. View Article : Google Scholar : PubMed/NCBI | |
Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI |