Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review)
- Authors:
- Giulia Tedesco
- Manuela Santarosa
- Roberta Maestro
-
Affiliations: Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I‑33081 Aviano, Italy - Published online on: April 10, 2024 https://doi.org/10.3892/ijo.2024.5645
- Article Number: 57
-
Copyright: © Tedesco et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Suzuki K, Kubota Y, Sekito T and Ohsumi Y: Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells. 12:209–218. 2007. View Article : Google Scholar : PubMed/NCBI | |
Reggiori F and Klionsky DJ: Autophagic processes in yeast: Mechanism, machinery and regulation. Genetics. 194:341–361. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G and Johansen T: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 282:24131–24145. 2007. View Article : Google Scholar : PubMed/NCBI | |
Elmore SP, Qian T, Grissom SF and Lemasters JJ: The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J. 15:2286–2287. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N and Levine B: Autophagy in human diseases. N Engl J Med. 383:1564–1576. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bustos SO, Antunes F, Rangel MC and Chammas R: Emerging autophagy functions shape the tumor microenvironment and play a role in cancer progression-implications for cancer therapy. Front Oncol. 10:6064362020. View Article : Google Scholar | |
Xie X, Koh JY, Price S, White E and Mehnert JM: Atg7 overcomes senescence and promotes growth of BrafV600E-Driven Melanoma. Cancer Discov. 5:410–423. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang A, Herter-Sprie G, Zhang H, Lin EY, Biancur D, Wang X, Deng J, Hai J, Yang S, Wong KK and Kimmelman AC: Autophagy sustains pancreatic cancer growth through both cell-autonomous and nonautonomous mechanisms. Cancer Discov. 8:276–287. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shchors K, Massaras A and Hanahan D: Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell. 28:456–471. 2015. View Article : Google Scholar : PubMed/NCBI | |
Santanam U, Banach-Petrosky W, Abate-Shen C, Shen MM, White E and DiPaola RS: Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev. 30:399–407. 2016. View Article : Google Scholar : PubMed/NCBI | |
Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, Kalaany NY, Jacks T, Chan CS, Rabinowitz JD and White E: Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4:914–927. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huo Y, Cai H, Teplova I, Bowman-Colin C, Chen G, Price S, Barnard N, Ganesan S, Karantza V, White E and Xia B: Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2-associated hereditary breast cancer. Cancer Discov. 3:894–907. 2013. View Article : Google Scholar : PubMed/NCBI | |
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, et al: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10:51–64. 2006. View Article : Google Scholar : PubMed/NCBI | |
Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S and White E: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21:1621–1635. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moussay E, Kaoma T, Baginska J, Muller A, Van Moer K, Nicot N, Nazarov PV, Vallar L, Chouaib S, Berchem G and Janji B: The acquisition of resistance to TNFα in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy. 7:760–770. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bildik G, Liang X, Sutton MN, Bast RC Jr and Lu Z: DIRAS3: An Imprinted tumor suppressor gene that regulates RAS and PI3K-driven cancer growth, motility, autophagy and tumor dormancy. Mol Cancer Ther. 21:25–37. 2021. View Article : Google Scholar | |
Dower CM, Wills CA, Frisch SM and Wang HG: Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy. 14:1110–1128. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N, Yoshimori T and Ohsumi Y: The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 27:107–132. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T and Mizushima N: The role of autophagy during the early neonatal starvation period. Nature. 432:1032–1036. 2004. View Article : Google Scholar : PubMed/NCBI | |
Levine B and Kroemer G: Biological functions of autophagy genes: A disease perspective. Cell. 176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, et al: The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30:187–200. 2021. View Article : Google Scholar | |
Leidal AM and Debnath J: Emerging roles for the autophagy machinery in extracellular vesicle biogenesis and secretion. FASEB Bioadv. 3:377–386. 2021. View Article : Google Scholar : PubMed/NCBI | |
Okamoto T, Yeo SK, Hao M, Copley MR, Haas MA, Chen S and Guan JL: FIP200 suppresses immune checkpoint therapy responses in breast cancers by limiting AZI2/TBK1/IRF signaling independent of its canonical autophagy function. Cancer Res. 80:3580–3592. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Sadoul R and Gibbings D: Autophagy-independent effects of autophagy-related-5 (Atg5) on exosome production and metastasis. Mol Cell Oncol. 5:e14459412018. View Article : Google Scholar : PubMed/NCBI | |
Hu F, Li G, Huang C, Hou Z, Yang X, Luo X, Feng Y, Wang G, Hu J and Cao Z: The autophagy-independent role of BECN1 in colorectal cancer metastasis through regulating STAT3 signaling pathway activation. Cell Death Dis. 11:3042020. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto H, Zhang S and Mizushima N: Autophagy genes in biology and disease. Nat Rev Genet. 24:382–400. 2023. View Article : Google Scholar : PubMed/NCBI | |
Agarwal S, Bell CM, Rothbart SB and Moran RG: AMP-activated Protein Kinase (AMPK) Control of mTORC1 Is p53-and TSC2-independent in pemetrexed-treated carcinoma cells. J Biol Chem. 290:27473–27486. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mercer TJ, Gubas A and Tooze SA: A molecular perspective of mammalian autophagosome biogenesis. J Biol Chem. 293:5386–5395. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zachari M and Ganley IG: The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 61:585–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH and Jung JU: Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol. 8:688–699. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, et al: Ambra1 regulates autophagy and development of the nervous system. Nature. 447:1121–1125. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sawa-Makarska J, Baumann V, Coudevylle N, von Bülow S, Nogellova V, Abert C, Schuschnig M, Graef M, Hummer G and Martens S: Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science. 369:eaaz77142020. View Article : Google Scholar : PubMed/NCBI | |
Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T, Noshiro D, Sugita Y, Nomura N, Iwata S, Ohsumi Y, et al: Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat Struct Mol Biol. 27:1185–1193. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI and Tooze SA: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell. 55:238–252. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wible DJ, Chao HP, Tang DG and Bratton SB: ATG5 cancer mutations and alternative mRNA splicing reveal a conjugation switch that regulates ATG12-ATG5-ATG16L1 complex assembly and autophagy. Cell Discov. 5:422019. View Article : Google Scholar : PubMed/NCBI | |
Baines K, Yoshioka K, Takuwa Y and Lane JD: The ATG5 interactome links clathrin-mediated vesicular trafficking with the autophagosome assembly machinery. Autophagy Rep. 1:88–118. 2022. View Article : Google Scholar : PubMed/NCBI | |
Haller M, Hock AK, Giampazolias E, Oberst A, Green DR, Debnath J, Ryan KM, Vousden KH and Tait SW: Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity. Autophagy. 10:2269–2278. 2014. View Article : Google Scholar | |
Tanida I, Ueno T and Kominami E: LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 36:2503–2518. 2004. View Article : Google Scholar : PubMed/NCBI | |
Melia TJ, Lystad AH and Simonsen A: Autophagosome biogenesis: From membrane growth to closure. J Cell Biol. 219:e2020020852020. View Article : Google Scholar : PubMed/NCBI | |
Gatica D, Lahiri V and Klionsky DJ: Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 20:233–242. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C and Liu HF: p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett. 21:292016. View Article : Google Scholar | |
Yim WW and Mizushima N: Lysosome biology in autophagy. Cell Discov. 6:62020. View Article : Google Scholar : PubMed/NCBI | |
Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of cancer: New Dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S and White E: Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21:1367–1381. 2007. View Article : Google Scholar : PubMed/NCBI | |
Marteijn JA, Lans H, Vermeulen W and Hoeijmakers JH: Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 15:465–481. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, He S, Wang Q, Li F, Kwak MJ, Chen S, O'Connell D, Zhang T, Pirooz SD, Jeon YH, et al: Autophagic UVRAG Promotes UV-Induced Photolesion Repair by Activation of the CRL4(DDB2) E3 Ligase. Mol Cell. 62:507–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Oh S, Li D, Ni D, Pirooz SD, Lee JH, Yang S, Lee JY, Ghozalli I, Costanzo V, et al: A dual role for UVRAG in maintaining chromosomal stability independent of autophagy. Dev Cell. 22:1001–1016. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park JM, Tougeron D, Huang S, Okamoto K and Sinicrope FA: Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS One. 9:e1008192014. View Article : Google Scholar : PubMed/NCBI | |
Knævelsrud H, Ahlquist T, Merok MA, Nesbakken A, Stenmark H, Lothe RA and Simonsen A: UVRAG mutations associated with microsatellite unstable colon cancer do not affect autophagy. Autophagy. 6:863–870. 2010. View Article : Google Scholar : PubMed/NCBI | |
He S, Zhao Z, Yang Y, O'Connell D, Zhang X, Oh S, Ma B, Lee JH, Zhang T, Varghese B, et al: Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun. 6:78392015. View Article : Google Scholar : PubMed/NCBI | |
Sun SY, Hu XT, Yu XF, Zhang YY, Liu XH, Liu YH, Wu SH, Li YY, Cui SX and Qu XJ: Nuclear translocation of ATG5 induces DNA mismatch repair deficiency (MMR-D)/microsatellite instability (MSI) via interacting with Mis18α in colorectal cancer. Br J Pharmacol. 178:2351–2369. 2021. View Article : Google Scholar : PubMed/NCBI | |
Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R and Simon HU: ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun. 4:21302013. View Article : Google Scholar : PubMed/NCBI | |
Maiani E, Milletti G, Nazio F, Holdgaard SG, Bartkova J, Rizza S, Cianfanelli V, Lorente M, Simoneschi D, Di Marco M, et al: AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature. 592:799–803. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu PF, Leung CM, Chang YH, Cheng JS, Chen JJ, Weng CJ, Tsai KW, Hsu CJ, Liu YC, Hsu PC, et al: ATG4B promotes colorectal cancer growth independent of autophagic flux. Autophagy. 10:1454–1465. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L and Finkel T: Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science. 336:225–228. 2012. View Article : Google Scholar : PubMed/NCBI | |
Frémont S, Gérard A, Galloux M, Janvier K, Karess RE and Berlioz-Torrent C: Beclin-1 is required for chromosome congression and proper outer kinetochore assembly. EMBO Rep. 14:364–372. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thoresen SB, Pedersen NM, Liestøl K and Stenmark H: A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res. 316:3368–3378. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sagona AP, Nezis IP, Pedersen NM, Liestøl K, Poulton J, Rusten TE, Skotheim RI, Raiborg C and Stenmark H: PtdIns(3) P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol. 12:362–371. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, Jin H, Xu H and Chen Q: Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell. 1:468–477. 2010. View Article : Google Scholar | |
Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J, Sharma AK, Amin S, Hu CD, Zhang J, et al: Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem. 287:12455–12468. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han J, Hou W, Goldstein LA, Stolz DB, Watkins SC and Rabinowich H: A Complex between Atg7 and Caspase-9: A novel mechanism of cross-regulation between autophagy and apoptosis. J Biol Chem. 289:6485–6497. 2014. View Article : Google Scholar : | |
Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, et al: Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 1:e182010. View Article : Google Scholar : PubMed/NCBI | |
Li X, Su J, Xia M, Li H, Xu Y, Ma C, Ma L, Kang J, Yu H, Zhang Z and Sun L: Caspase-mediated cleavage of Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in human ovarian cancer SKOV3 cells. Apoptosis. 21:225–238. 2016. View Article : Google Scholar | |
Strappazzon F, Di Rita A, Cianfanelli V, D'Orazio M, Nazio F, Fimia GM and Cecconi F: Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy. 12:963–975. 2016. View Article : Google Scholar : PubMed/NCBI | |
Betin VM and Lane JD: Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci. 122(Pt 14): 2554–2566. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T and Simon HU: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 8:1124–1132. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rubinstein AD, Eisenstein M, Ber Y, Bialik S and Kimchi A: The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell. 44:698–709. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoo BH, Khan IA, Koomson A, Gowda P, Sasazuki T, Shirasawa S, Gujar S and Rosen KV: Oncogenic RAS-induced downregulation of ATG12 is required for survival of malignant intestinal epithelial cells. Autophagy. 14:134–151. 2018. View Article : Google Scholar : | |
Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C and Debnath J: ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell. 142:590–600. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu H, He Z, Germič N, Ademi H, Frangež Ž, Felser A, Peng S, Riether C, Djonov V, Nuoffer JM, et al: ATG12 deficiency leads to tumor cell oncosis owing to diminished mitochondrial biogenesis and reduced cellular bioenergetics. Cell Death Differ. 27:1965–1980. 2020. View Article : Google Scholar : | |
Ni Z, He J, Wu Y, Hu C, Dai X, Yan X, Li B, Li X, Xiong H, Li Y, et al: AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Autophagy. 14:685–701. 2018. View Article : Google Scholar : | |
Wu W, Wang X, Berleth N, Deitersen J, Wallot-Hieke N, Böhler P, Schlütermann D, Stuhldreier F, Cox J, Schmitz K, et al: The autophagy-initiating kinase ULK1 Controls RIPK1-mediated cell death. Cell Rep. 31:1075472020. View Article : Google Scholar : PubMed/NCBI | |
Joshi A, Iyengar R, Joo JH, Li-Harms XJ, Wright C, Marino R, Winborn BJ, Phillips A, Temirov J, Sciarretta S, et al: Nuclear ULK1 promotes cell death in response to oxidative stress through PARP1. Cell Death Differ. 23:216–230. 2016. View Article : Google Scholar : | |
Satyavarapu EM, Das R and Mandal C, Mukhopadhyay A and Mandal C: Autophagy-independent induction of LC3B through oxidative stress reveals its non-canonical role in anoikis of ovarian cancer cells. Cell Death Dis. 9:9342018. View Article : Google Scholar | |
Hanahan D and Weinberg RA: Hallmarks of cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, Yamazoe T, Black T, Sahmoud A, Furth EE, et al: EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell. 45:681–695.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM and Kim DR: Control of the epithelial-to-mesenchymal transition and cancer metastasis by autophagy-dependent SNAI1 degradation. Cells. 8:1292019. View Article : Google Scholar : PubMed/NCBI | |
Han JH, Kim YK, Kim H, Lee J, Oh MJ, Kim SB, Kim M, Kim KH, Yoon HJ, Lee MS, et al: Snail acetylation by autophagy-derived acetyl-coenzyme A promotes invasion and metastasis of KRAS-LKB1 co-mutated lung cancer cells. Cancer Commun (Lond). 42:716–749. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sharifi MN, Mowers EE, Drake LE, Collier C, Chen H, Zamora M, Mui S and Macleod KF: Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep. 15:1660–1672. 2016. View Article : Google Scholar : PubMed/NCBI | |
Santarosa M and Maestro R: The autophagic route of E-Cadherin and cell adhesion molecules in cancer progression. Cancers (Basel). 13:63282021. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Lopez N, Athonvarangkul D, Mishall P, Sahu S and Singh R: Autophagy proteins regulate ERK phosphorylation. Nat Commun. 4:27992013. View Article : Google Scholar : PubMed/NCBI | |
Rohatgi RA, Janusis J, Leonard D, Bellvé KD, Fogarty KE, Baehrecke EH, Corvera S and Shaw LM: Beclin 1 regulates growth factor receptor signaling in breast cancer. Oncogene. 34:5352–5362. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, Doench JG, Bennett L and Levine B: Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci USA. 118:e20204781182021. View Article : Google Scholar : PubMed/NCBI | |
Wong M, Ganapathy AS, Suchanec E, Laidler L, Ma T and Nighot P: Intestinal epithelial tight junction barrier regulation by autophagy-related protein ATG6/beclin 1. Am J Physiol, Cell Physiol. 316:C753–C765. 2019. View Article : Google Scholar : PubMed/NCBI | |
Damiano V, Spessotto P, Vanin G, Perin T, Maestro R and Santarosa M: The autophagy machinery contributes to E-cadherin turnover in breast cancer. Front Cell Dev Biol. 8:5452020. View Article : Google Scholar : PubMed/NCBI | |
Baisamy L, Cavin S, Jurisch N and Diviani D: The ubiquitin-like protein LC3 regulates the Rho-GEF activity of AKAP-Lbc. J Biol Chem. 284:28232–28242. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Long T, Gu CS, Tang JY, Gao LF, Zhu JX, Hu ZY, Wang X, Ma YD, Ding YQ, et al: MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differ. 28:3251–3269. 2021. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L and Green DR: Autophagy-Independent functions of the autophagy machinery. Cell. 177:1682–1699. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ishibashi K, Uemura T, Waguri S and Fukuda M: Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity. Mol Biol Cell. 23:3193–3202. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming FJ, Trung MT, Meng L, Latreille E, Tanese de Souza C, McCulloch D, et al: Atg5 Disassociates the V1V0-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell. 43:716–730.e7. 2017. View Article : Google Scholar | |
Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C and Deretic V: Secretory autophagy. Curr Opin Cell Biol. 35:106–116. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wei Z, Yu H, Xu Y, He W, Zhou X and Gou X: Secretory autophagy-induced bladder tumour-derived extracellular vesicle secretion promotes angiogenesis by activating the TPX2-mediated phosphorylation of the AURKA-PI3K-AKT axis. Cancer Lett. 523:10–28. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tzeng HT, Yang JL, Tseng YJ, Lee CH, Chen WJ and Chyuan IT: Plasminogen activator inhibitor-1 secretion by autophagy contributes to melanoma resistance to chemotherapy through tumor microenvironment modulation. Cancers (Basel). 13:12532021. View Article : Google Scholar : PubMed/NCBI | |
New J, Arnold L, Ananth M, Alvi S, Thornton M, Werner L, Tawfik O, Dai H, Shnayder Y, Kakarala K, et al: Secretory autophagy in cancer-associated fibroblasts promotes head and neck cancer progression and offers a novel therapeutic target. Cancer Res. 77:6679–6691. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cunha LD, Yang M, Carter R, Guy C, Harris L, Crawford JC, Quarato G, Boada-Romero E, Kalkavan H, Johnson MDL, et al: LC3-Associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell. 175:429–441.e16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang W, Xu Y, Xu X, Jiang Q, Ruan J, Wu Y, Zhou Y, Saw PE and Luo B: Targeting PI3Kγ/AKT Pathway Remodels LC3-Associated phagocytosis induced immunosuppression after radiofrequency ablation. Adv Sci (Weinh). 9:e21021822022. View Article : Google Scholar | |
Grimm WA, Messer JS, Murphy SF, Nero T, Lodolce JP, Weber CR, Logsdon MF, Bartulis S, Sylvester BE, Springer A, et al: The Thr300Ala variant in ATG16L1 is associated with improved survival in human colorectal cancer and enhanced production of type I interferon. Gut. 65:456–464. 2016. View Article : Google Scholar | |
Peng Y and Croce CM: The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 1:150042016. View Article : Google Scholar : PubMed/NCBI | |
Chipman LB and Pasquinelli AE: miRNA Targeting: Growing beyond the Seed. Trends Genet. 35:215–222. 2019. View Article : Google Scholar : PubMed/NCBI | |
de la Cruz-Ojeda P, Flores-Campos R, Navarro-Villarán E and Muntané J: The role of non-coding RNAs in autophagy during carcinogenesis. Front Cell Dev Biol. 10:7993922022. View Article : Google Scholar : PubMed/NCBI | |
Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, et al: The emerging roles of autophagy-related MicroRNAs in cancer. Int J Biol Sci. 17:134–150. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, Liu CG and Yang JM: Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 5:816–823. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang ZC, Huang FZ, Xu HB, Sun JC and Wang CF: MicroRNA-137 inhibits autophagy and chemosensitizes pancreatic cancer cells by targeting ATG5. Int J Biochem Cell Biol. 111:63–71. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhou J, Wu X, Huang J, Chen W, Liu D, Zhang J, Huang Y and Xue W: miR-30a-3p inhibits renal cancer cell invasion and metastasis through targeting ATG12. Transl Androl Urol. 9:646–653. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu JL, He GY, Lan XL, Zeng ZC, Guan J, Ding Y, Qian XL, Liao WT, Ding YQ and Liang L: Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis. 7:162018. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Chen Y, Shen Y and Tantai J: Knockdown of TRIM65 inhibits autophagy and cisplatin resistance in A549/DDP cells by regulating miR-138-5p/ATG7. Cell Death Dis. 10:4292019. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Yan W, He X, Zhang L, Li C, Huang H, Nace G, Geller DA, Lin J and Tsung A: miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology. 143:177–187.e8. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Shi H, Lin S, Ba M and Cui S: MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncol Rep. 34:1557–1564. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li M, Chen XM, Wang DM, Gan L and Qiao Y: Effects of miR-26a on the expression of Beclin 1 in retinoblastoma cells. Genet Mol Res. 15:2016. | |
Hou W, Song L, Zhao Y, Liu Q and Zhang S: Inhibition of beclin-1-mediated autophagy by MicroRNA-17-5p enhanced the radiosensitivity of glioma cells. Oncol Res. 25:43–53. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Wang B, Long H, Yu J, Li F, Hou H and Yang Q: Decreased miR-124-3p expression prompted breast cancer cell progression mainly by targeting Beclin-1. Clin Lab. 62:1139–1145. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tan S, Shi H, Ba M, Lin S, Tang H, Zeng X and Zhang X: miR-409-3p sensitizes colon cancer cells to oxaliplatin by inhibiting Beclin-1-mediated autophagy. Int J Mol Med. 37:1030–1038. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li J, Shao C, Tang X, Du Y, Xu T, Zhao Z, Hu H, Sheng Y, Hu C and Xi Y: Systematic profiling of diagnostic and prognostic value of autophagy-related genes for sarcoma patients. BMC Cancer. 21:582021. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Sun K, Xia W, Li Y, Zhong M and Lei K: Autophagy-related prognostic signature for survival prediction of triple negative breast cancer. PeerJ. 10:e128782022. View Article : Google Scholar : PubMed/NCBI | |
Sivridis E, Koukourakis MI, Zois CE, Ledaki I, Ferguson DJ, Harris AL, Gatter KC and Giatromanolaki A: LC3A-positive light microscopy detected patterns of autophagy and prognosis in operable breast carcinomas. Am J Pathol. 176:2477–2489. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gachechiladze M, Uberall I, Skanderova D, Matchavariani J, Ibrahim M, Shani I, Smickova P, Kolek V, Cierna L, Klein J, et al: LC3A positive 'stone like structures' are differentially associated with survival outcomes and CD68 macrophage infiltration in patients with lung adenocarcinoma and squamous cell carcinoma. Lung Cancer. 156:129–135. 2021. View Article : Google Scholar : PubMed/NCBI | |
Terabe T, Uchida F, Nagai H, Omori S, Ishibashi-Kanno N, Hasegawa S, Yamagata K, Gosho M, Yanagawa T and Bukawa H: Expression of autophagy-related markers at the surgical margin of oral squamous cell carcinoma correlates with poor prognosis and tumor recurrence. Hum Pathol. 73:156–163. 2018. View Article : Google Scholar | |
Giatromanolaki A, Koukourakis MI, Georgiou I, Kouroupi M and Sivridis E: LC3A, LC3B and Beclin-1 Expression in gastric cancer. Anticancer Res. 38:6827–6833. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bortnik S, Tessier-Cloutier B, Leung S, Xu J, Asleh K, Burugu S, Magrill J, Greening K, Derakhshan F, Yip S, et al: Differential expression and prognostic relevance of autophagy-related markers ATG4B, GABARAP, and LC3B in breast cancer. Breast Cancer Res Treat. 183:525–547. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim JW, Jun SY, Kim JM, Oh YH, Yoon G, Hong SM and Chung JY: Prognostic value of LC3B and p62 expression in small intestinal adenocarcinoma. J Clin Med. 10:53982021. View Article : Google Scholar : PubMed/NCBI | |
Langer R, Neppl C, Keller MD, Schmid RA, Tschan MP and Berezowska S: Expression analysis of autophagy related markers LC3B, p62 and HMGB1 indicate an autophagy-independent negative prognostic impact of High p62 expression in pulmonary squamous cell carcinomas. Cancers (Basel). 10:2812018. View Article : Google Scholar : PubMed/NCBI | |
Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, et al: Autophagy suppresses tumorigenesis through elimination of p62. Cell. 137:1062–1075. 2009. View Article : Google Scholar : PubMed/NCBI | |
Islam MA, Sooro MA and Zhang P: Autophagic regulation of p62 is critical for cancer therapy. Int J Mol Sci. 19:14052018. View Article : Google Scholar : PubMed/NCBI | |
Ruan H, Xu J, Wang L, Zhao Z, Kong L, Lan B and Li X: The prognostic value of p62 in solid tumor patients: A meta-analysis. Oncotarget. 9:4258–4266. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Martín P, Saito T and Komatsu M: p62/SQSTM1: 'Jack of all trades' in health and cancer. FEBS J. 286:8–23. 2019. View Article : Google Scholar | |
Laddha SV, Ganesan S, Chan CS and White E: Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res. 12:485–490. 2014. View Article : Google Scholar : PubMed/NCBI | |
Delaney JR, Patel CB, Bapat J, Jones CM, Ramos-Zapatero M, Ortell KK, Tanios R, Haghighiabyaneh M, Axelrod J, DeStefano JW, et al: Autophagy gene haploinsufficiency drives chromosome instability, increases migration, and promotes early ovarian tumors. PLoS Genet. 16:e10085582020. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, et al: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 112:1809–1820. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ajazi A and Foiani M: Vps30/Atg6/BECN1 at the crossroads between cell metabolism and DNA damage response. Autophagy. 18:1202–1204. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Sebti S, Titone R, Zhou Y, Isidoro C, Ross TS, Hibshoosh H, Xiao G, Packer M, Xie Y and Levine B: Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor-negative subtypes and poor prognosis. EBioMedicine. 2:255–263. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Yan X, Wang HQ, Gao YY, Liu J, Hu Z, Liu D, Gao J and Lin B: Autophagy-independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors. BMC Cancer. 12:6222012. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Zang Y, Zhao Y, Cui W, Zhang H, Zhu Y and Xu M: comprehensive pan-cancer analysis confirmed that ATG5 Promoted the maintenance of tumor metabolism and the occurrence of tumor immune escape. Front Oncol. 11:6522112021. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Wang X, Ding J, Yang H and Xie Y: Increased ATG5 expression predicts poor prognosis and promotes EMT in cervical carcinoma. Front Cell Dev Biol. 9:7571842021. View Article : Google Scholar : PubMed/NCBI | |
Qin YQ, Liu SY, Lv ML and Sun WL: Ambra1 in cancer: Implications for clinical oncology. Apoptosis. 27:720–729. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nitta T, Sato Y, Ren XS, Harada K, Sasaki M, Hirano S and Nakanuma Y: Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma. Int J Clin Exp Pathol. 7:4913–4921. 2014.PubMed/NCBI | |
Ko YH, Cho YS, Won HS, Jeon EK, An HJ, Hong SU, Park JH and Lee MA: Prognostic significance of autophagy-related protein expression in resected pancreatic ductal adenocarcinoma. Pancreas. 42:829–835. 2013. View Article : Google Scholar : PubMed/NCBI | |
Falasca L, Torino F, Marconi M, Costantini M, Pompeo V, Sentinelli S, De Salvo L, Patrizio M, Padula C, Gallucci M, et al: AMBRA1 and SQSTM1 expression pattern in prostate cancer. Apoptosis. 20:1577–1586. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ieni A, Cardia R, Giuffrè G, Rigoli L, Caruso RA and Tuccari G: Immunohistochemical expression of autophagy-related proteins in advanced tubular gastric adenocarcinomas and its implications. Cancers (Basel). 11:3892019. View Article : Google Scholar : PubMed/NCBI | |
Tang DY, Ellis RA and Lovat PE: Prognostic impact of autophagy biomarkers for cutaneous melanoma. Front Oncol. 6:2362016. View Article : Google Scholar : PubMed/NCBI | |
Schaaf MB, Keulers TG, Vooijs MA and Rouschop KM: LC3/GABARAP family proteins: Autophagy-(un)related functions. FASEB J. 30:3961–3978. 2016. View Article : Google Scholar : PubMed/NCBI | |
González-Rodríguez P, Klionsky DJ and Joseph B: Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun. 13:27352022. View Article : Google Scholar : PubMed/NCBI | |
Greer SU, Ogmundsdottir MH, Chen J, Lau BT, Delacruz RGC, Sandoval IT, Kristjansdottir S, Jones DA, Haslem DS, Romero R, et al: Genetic risk of cholangiocarcinoma is linked to the autophagy gene ATG7. BioRxiv. 2019. | |
Ogmundsdottir MH, Fock V, Sooman L, Pogenberg V, Dilshat R, Bindesbøll C, Ogmundsdottir HM, Simonsen A, Wilmanns M and Steingrimsson E: A short isoform of ATG7 fails to lipidate LC3/GABARAP. Sci Rep. 8:143912018. View Article : Google Scholar : PubMed/NCBI | |
Somlapura M, Gottschalk B, Lahiri P, Kufferath I, Pabst D, Rülicke T, Graier WF, Denk H and Zatloukal K: Different Roles of p62 (SQSTM1) isoforms in keratin-related protein aggregation. Int J Mol Sci. 22:62272021. View Article : Google Scholar : PubMed/NCBI | |
Kageyama S, Saito T, Obata M, Koide RH, Ichimura Y and Komatsu M: Negative Regulation of the Keap1-Nrf2 Pathway by a p62/Sqstm1 Splicing Variant. Mol Cell Biol. 38:e006422018. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Wang H, Duan J, Luo W, Zhao R, Shen Y, Wang B, Tao S, Sun Y, Ye Q, et al: An alternatively spliced p62 isoform confers resistance to chemotherapy in breast cancer. Cancer Res. 82:4001–4015. 2022. View Article : Google Scholar : PubMed/NCBI | |
Otomo C, Metlagel Z, Takaesu G and Otomo T: Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol. 20:59–66. 2013. View Article : Google Scholar : |