1
|
Forner A, Reig M and Bruix J:
Hepatocellular carcinoma. Lancet. 391:1301–1314. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
van Niel G, D'Angelo G and Raposo G:
Shedding light on the cell biology of extracellular vesicles. Nat
Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pegtel DM and Gould SJ: Exosomes. Annu Rev
Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang L and Yu D: Exosomes in cancer
development, metastasis, and immunity. Biochim Biophys Acta Rev
Cancer. 1871:455–468. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q,
Tian Y, Rao S, Oyang L, Liang J, et al: Exosomal miRNAs in tumor
microenvironment. J Exp Clin Cancer Res. 39:672020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Corley M, Burns MC and Yeo GW: How
RNA-binding proteins interact with RNA: Molecules and mechanisms.
Mol Cell. 78:9–29. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nussbacher JK and Yeo GW: Systematic
discovery of RNA binding proteins that regulate MicroRNA levels.
Mol Cell. 69:1005–1016. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
van Kouwenhove M, Kedde M and Agami R:
MicroRNA regulation by RNA-binding proteins and its implications
for cancer. Nat Rev Cancer. 11:644–656. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fabbiano F, Corsi J, Gurrieri E, Trevisan
C, Notarangelo M and D'Agostino VG: RNA packaging into
extracellular vesicles: An orchestra of RNA-binding proteins? J
Extracell Vesicles. 10:e120432020. View Article : Google Scholar
|
12
|
Wei JX, Lv LH, Wan YL, Cao Y, Li GL, Lin
HM, Zhou R, Shang CZ, Cao J, He H, et al: Vps4A functions as a
tumor suppressor by regulating the secretion and uptake of exosomal
microRNAs in human hepatoma cells. Hepatology. 61:1284–1294. 2015.
View Article : Google Scholar
|
13
|
de la Cruz J, Karbstein K and Woolford JL
Jr: Functions of ribosomal proteins in assembly of eukaryotic
ribosomes in vivo. Annu Rev Biochem. 84:93–129. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou X, Liao WJ, Liao JM, Liao P and Lu H:
Ribosomal proteins: Functions beyond the ribosome. J Mol Cell Biol.
7:92–104. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Luan Y, Tang N, Yang J, Liu S, Cheng C,
Wang Y, Chen C, Guo YN, Wang H, Zhao W, et al: Deficiency of
ribosomal proteins reshapes the transcriptional and translational
landscape in human cells. Nucleic Acids Res. 50:6601–6617. 2022.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ebright RY, Lee S, Wittner BS,
Niederhoffer KL, Nicholson BT, Bardia A, Truesdell S, Wiley DF,
Wesley B, Li S, et al: Deregulation of ribosomal protein expression
and translation promotes breast cancer metastasis. Science.
367:1468–1473. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bork iewicz L, Mołoń M, Molesta k E, Grela
P, Horbowicz-Drożdżal P, Wawiórka L and Tchórzewski M: Functional
analysis of the ribosomal uL6 protein of saccharomyces cerevisiae.
Cells. 8:7182019. View Article : Google Scholar
|
18
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the Care and Use of Laboratory Animals. 8th
edition. Washington (DC): National Academies Press (US); 2011
|
19
|
Zhou YF, Song SS, Tian MX, Tang Z, Wang H,
Fang Y, Qu WF, Jiang XF, Tao CY, Huang R, et al: Cystathionine
β-synthase mediated PRRX2/IL-6/STAT3 inactivation suppresses Tregs
infiltration and induces apoptosis to inhibit HCC carcinogenesis. J
Immunother Cancer. 9:e0030312021. View Article : Google Scholar
|
20
|
Liu J, Fan L, Yu H, Zhang J, He Y, Feng D,
Wang F, Li X, Liu Q, Li Y, et al: Endoplasmic reticulum stress
causes liver cancer cells to release exosomal miR-23a-3p and
up-regulate programmed death ligand 1 expression in macrophages.
Hepatology. 70:241–258. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yang B, Feng X, Liu H, Tong R, Wu J, Li C,
Yu H, Chen Y, Cheng Q, Chen J, et al: High-metastatic cancer cells
derived exosomal miR92a-3p promotes epithelial-mesenchymal
transition and metastasis of low-metastatic cancer cells by
regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogene.
39:6529–6543. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
McCullough J, Frost A and Sundquist WI:
Structures, functions, and dynamics of ESCRT-III/Vps4 membrane
remodeling and fission complexes. Annu Rev Cell Dev Biol.
34:85–109. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pfitzner AK, Mercier V, Jiang X, Moser
VFJ, Baum B, Šarić A and Roux A: An ESCRT-III polymerization
sequence drives membrane deformation and fission. Cell.
182:1140–1155. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gibbings DJ, Ciaudo C, Erhardt M and
Voinnet O: Multivesicular bodies associate with components of miRNA
effector complexes and modulate miRNA activity. Nat Cell Biol.
11:1143–1149. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yao B, La LB, Chen YC, Chang LJ and Chan
EK: Defining a new role of GW182 in maintaining miRNA stability.
EMBO Rep. 13:1102–1108. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Villarroya-Beltri C, Gutiérrez-Vázquez C,
Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N,
Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M and
Sánchez-Madrid F: Sumoylated hnRNPA2B1 controls the sorting of
miRNAs into exosomes through binding to specific motifs. Nat
Commun. 4:29802013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shurtleff MJ, Yao J, Qin Y, Nottingham RM,
Temoche-Diaz MM, Schekman R and Lambowitz AM: Broad role for YBX1
in defining the small noncoding RNA composition of exosomes. Proc
Natl Acad Sci USA. 114:E8987–E8995. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hoffman DW, Davies C, Gerchman SE, Kycia
JH, Porter SJ, White SW and Ramakrishnan V: Crystal structure of
prokaryotic ribosomal protein L9: A bi-lobed RNA-binding protein.
EMBO J. 13:205–212. 1994. View Article : Google Scholar : PubMed/NCBI
|
29
|
Warner JR and McIntosh KB: How common are
extraribosomal functions of ribosomal proteins? Mol Cell. 34:3–11.
2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Huang T, Jiang C, Yang M, Xiao H, Huang X,
Wu L and Yao M: Salmonella enterica serovar Typhimurium inhibits
the innate immune response and promotes apoptosis in a
ribosomal/TRP53-dependent manner in swine neutrophils. Vet Res.
51:1052020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lezzerini M, Penzo M, O'Donohue MF,
Marques DSVC, Saby M, Elfrink HL, Diets IJ, Hesse AM, Couté Y,
Gastou M, et al: Ribosomal protein gene RPL9 variants can
differentially impair ribosome function and cellular metabolism.
Nucleic Acids Res. 48:770–787. 2020. View Article : Google Scholar :
|
32
|
Beyer AR, Bann DV, Rice B, Pultz IS, Kane
M, Goff SP, Golovkina TV and Parent LJ: Nucleolar trafficking of
the mouse mammary tumor virus gag protein induced by interaction
with ribosomal protein L9. J Virol. 87:1069–1082. 2013. View Article : Google Scholar :
|
33
|
Baik IH, Jo GH, Seo D, Ko MJ, Cho CH, Lee
MG and Lee YH: Knockdown of RPL9 expression inhibits colorectal
carcinoma growth via the inactivation of Id-1/NF-κB signaling axis.
Int J Oncol. 49:1953–1962. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kanada M, Bachmann MH, Hardy JW,
Frimannson DO, Bronsart L, Wang A, Sylvester MD, Schmidt TL, Kaspar
RL, Butte MJ, et al: Differential fates of biomolecules delivered
to target cells via extracellular vesicles. Proc Natl Acad Sci USA.
112:E1433–E1442. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kogure T, Lin WL, Yan IK, Braconi C and
Patel T: Intercellular nanovesicle-mediated microRNA transfer: A
mechanism of environmental modulation of hepatocellular cancer cell
growth. Hepatology. 54:1237–1248. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Montecalvo A, Larregina AT, Shufesky WJ,
Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G,
Wang Z, et al: Mechanism of transfer of functional microRNAs
between mouse dendritic cells via exosomes. Blood. 119:756–766.
2012. View Article : Google Scholar :
|
37
|
Fan JC, Zeng F, Le YG and Xin L: LncRNA
CASC2 inhibited the viability and induced the apoptosis of
hepatocellular carcinoma cells through regulating miR-24-3p. J Cell
Biochem. 119:6391–6397. 2018. View Article : Google Scholar
|
38
|
Wen Y, Han J, Chen J, Dong J, Xia Y, Liu
J, Jiang Y, Dai J, Lu J, Jin G, et al: Plasma miRNAs as early
biomarkers for detecting hepatocellular carcinoma. Int J Cancer.
137:1679–1690. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zou L, Chai J, Gao Y, Guan J, Liu Q and Du
JJ: Down-regulated PLAC8 promotes hepatocellular carcinoma cell
proliferation by enhancing PI3K/Akt/GSK3β/Wnt/β-catenin signaling.
Biomed Pharmacother. 84:139–146. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bitaraf A, Razmara E, Bakhshinejad B,
Yousefi H, Vatanmakanian M, Garshasbi M, Cho WC and Babashah S: The
oncogenic and tumor suppressive roles of RNA-binding proteins in
human cancers. J Cell Physiol. 236:6200–6224. 2021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mukohyama J, Shimono Y, Minami H, Kakeji Y
and Suzuki A: Roles of microRNAs and RNA-binding proteins in the
regulation of colorectal cancer stem cells. Cancers (Basel).
9:1432017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Vos PD, Leedman PJ, Filipovska A and
Rackham O: Modulation of miRNA function by natural and synthetic
RNA-binding proteins in cancer. Cell Mol Life Sci. 76:3745–3752.
2019. View Article : Google Scholar : PubMed/NCBI
|