S100 protein family: Emerging role and mechanism in digestive tract cancer (Review)
- Authors:
- Mingshuai Li
- Peng Cui
- Wenqing Dai
- Bo Cao
- Haobin Zhao
- Shuyu Jin
- Donghua Xu
- Youkui Shi
- Shushan Yan
-
Affiliations: Department of Emergency of The Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, P.R. China, Central Laboratory of The First Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, P.R. China, Department of Pharmacology, College of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China, Department of Gastrointestinal and Anal Diseases Surgery of The Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, P.R. China - Published online on: April 24, 2024 https://doi.org/10.3892/ijo.2024.5647
- Article Number: 59
This article is mentioned in:
Abstract
Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA and Bray F: Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 159:335–349.e15. 2020. View Article : Google Scholar : PubMed/NCBI | |
Moore BW: A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 19:739–744. 1965. View Article : Google Scholar : PubMed/NCBI | |
Zimmer DB, Cornwall EH, Landar A and Song W: The S100 protein family: History, function, and expression. Brain Res Bull. 37:417–429. 1995. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez LL, Garrie K and Turner MD: Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res. 1867:1186772020. View Article : Google Scholar : PubMed/NCBI | |
Marenholz I, Heizmann CW and Fritz G: S100 proteins in mouse and man: From evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun. 322:1111–1122. 2004. View Article : Google Scholar : PubMed/NCBI | |
Donato R: Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta. 1450:191–231. 1999. View Article : Google Scholar : PubMed/NCBI | |
Delangre E, Oppliger E, Berkcan S, Gjorgjieva M, Correia de Sousa M and Foti M: S100 proteins in fatty liver disease and hepatocellular carcinoma. Int J Mol Sci. 23:110302022. View Article : Google Scholar : PubMed/NCBI | |
You X, Li M, Cai H, Zhang W, Hong Y, Gao W, Liu Y, Liang X, Wu T, Chen F and Su D: Calcium binding protein S100A16 expedites proliferation, invasion and epithelial-mesenchymal transition process in gastric cancer. Front Cell Dev Biol. 9:7369292021. View Article : Google Scholar : PubMed/NCBI | |
Ohuchida K, Mizumoto K, Miyasaka Y, Yu J, Cui L, Yamaguchi H, Toma H, Takahata S, Sato N, Nagai E, et al: Over-expression of S100A2 in pancreatic cancer correlates with progression and poor prognosis. J Pathol. 213:275–282. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zeng ML, Zhu XJ, Liu J, Shi PC, Kang YL, Lin Z and Cao YP: An integrated bioinformatic analysis of the S100 gene family for the prognosis of colorectal cancer. Biomed Res Int. 2020:47469292020. View Article : Google Scholar : PubMed/NCBI | |
Heizmann CW: Intracellular calcium-binding proteins: Structure and possible functions. J Cardiovasc Pharmacol. 8 (Suppl 8):S7–S12. 1986. View Article : Google Scholar : PubMed/NCBI | |
Schäfer BW and Heizmann CW: The S100 family of EF-hand calcium-binding proteins: Functions and pathology. Trends Biochem Sci. 21:134–140. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wright NT, Cannon BR, Wilder PT, Morgan MT, Varney KM, Zimmer DB and Weber DJ: Solution structure of S100A1 bound to the CapZ peptide (TRTK12). J Mol Biol. 386:1265–1277. 2009. View Article : Google Scholar : PubMed/NCBI | |
Malashkevich VN, Varney KM, Garrett SC, Wilder PT, Knight D, Charpentier TH, Ramagopal UA, Almo SC, Weber DJ and Bresnick AR: Structure of Ca2+-bound S100A4 and its interaction with peptides derived from nonmuscle myosin-IIA. Biochemistry. 47:5111–5126. 2008. View Article : Google Scholar : PubMed/NCBI | |
Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ and Geczy CL: Functions of S100 proteins. Curr Mol Med. 13:24–57. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Braunstein Z, Toomey AC, Zhong J and Rao X: S100 proteins as an important regulator of macrophage inflammation. Front Immunol. 8:19082018. View Article : Google Scholar : PubMed/NCBI | |
Gilston BA, Skaar EP and Chazin WJ: Binding of transition metals to S100 proteins. Sci China Life Sci. 59:792–801. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kuberappa PH, Bagalad BS, Ananthaneni A, Kiresur MA and Srinivas GV: Certainty of S100 from physiology to pathology. J Clin Diagn Res. 10:ZE10–ZE15. 2016.PubMed/NCBI | |
Wang S, Song R, Wang Z, Jing Z, Wang S and Ma J: S100A8/A9 in inflammation. Front Immunol. 9:12982018. View Article : Google Scholar : PubMed/NCBI | |
Bresnick AR, Weber DJ and Zimmer DB: S100 proteins in cancer. Nat Rev Cancer. 15:96–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abdelfattah N, Kumar P, Wang C, Leu JS, Flynn WF, Gao R, Baskin DS, Pichumani K, Ijare OB, Wood SL, et al: Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat Commun. 13:7672022. View Article : Google Scholar : PubMed/NCBI | |
Peng G, Tsukamoto S, Okumura K, Ogawa H, Ikeda S and Niyonsaba F: A pancancer analysis of the oncogenic role of S100 calcium binding protein A7 (S100A7) in human tumors. Biology (Basel). 11:2842022.PubMed/NCBI | |
Chen B, Zheng D, Liu C, Bhandari A, Hirachan S, Shen C, Mainali S, Li H, Jiang W, Xu J, et al: S100A6 promotes the development of thyroid cancer and inhibits apoptosis of thyroid cancer cells through the PI3K/AKT/mTOR pathway. Pathol Res Pract. 242:1543252023. View Article : Google Scholar : PubMed/NCBI | |
Christensen MV, Høgdall CK, Jochumsen KM and Høgdall EVS: Annexin A2 and cancer: A systematic review. Int J Oncol. 52:5–18. 2018.PubMed/NCBI | |
Basnet S, Sharma S, Costea DE and Sapkota D: Expression profile and functional role of S100A14 in human cancer. Oncotarget. 10:2996–3012. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Bian Y, Wang Y, Chen L, Yu A and Sun X: FAM107B is regulated by S100A4 and mediates the effect of S100A4 on the proliferation and migration of MGC803 gastric cancer cells. Cell Biol Int. 41:1103–1109. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu A, Wang Y, Bian Y, Chen L, Guo J, Shen W, Chen D, Liu S and Sun X: IL-1β promotes the nuclear translocaiton of S100A4 protein in gastric cancer cells MGC803 and the cell's stem-like properties through PI3K pathway. J Cell Biochem. 119:8163–8173. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bian Y, Guo J, Qiao L and Sun X: miR-3189-3p mimics enhance the effects of S100A4 siRNA on the inhibition of proliferation and migration of gastric cancer cells by targeting CFL2. Int J Mol Sci. 19:2362018. View Article : Google Scholar : PubMed/NCBI | |
Fan B, Zhang LH, Jia YN, Zhong XY, Liu YQ, Cheng XJ, Wang XH, Xing XF, Hu Y, Li YA, et al: Presence of S100A9-positive inflammatory cells in cancer tissues correlates with an early stage cancer and a better prognosis in patients with gastric cancer. BMC Cancer. 12:3162012. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Zhang C and Zhao Q: S100A9 as a novel diagnostic and prognostic biomarker in human gastric cancer. Scand J Gastroenterol. 55:338–346. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ghavami S, Chitayat S, Hashemi M, Eshraghi M, Chazin WJ, Halayko AJ and Kerkhoff C: S100A8/A9: A Janus-faced molecule in cancer therapy and tumorgenesis. Eur J Pharmacol. 625:73–83. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shabani F, Farasat A, Mahdavi M and Gheibi N: Calprotectin (S100A8/S100A9): A key protein between inflammation and cancer. Inflamm Res. 67:801–812. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C and Los M: S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol. 83:1484–1492. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shabani F, Mahdavi M, Imani M, Hosseinpour-Feizi MA and Gheibi N: Calprotectin (S100A8/S100A9)-induced cytotoxicity and apoptosis in human gastric cancer AGS cells: Alteration in expression levels of Bax, Bcl-2, and ERK2. Hum Exp Toxicol. 39:1031–1045. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Luo J, Rong J, He S, Zhang L and Zheng F: Distinct prognostic roles of S100 mRNA expression in gastric cancer. Pathol Res Pract. 215:127–136. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kwon CH, Moon HJ, Park HJ, Choi JH and Park DY: S100A8 and S100A9 promotes invasion and migration through p38 mitogen-activated protein kinase-dependent NF-κB activation in gastric cancer cells. Mol Cells. 35:226–234. 2013. View Article : Google Scholar : PubMed/NCBI | |
Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD and Smyth MJ: Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA. 105:652–656. 2008. View Article : Google Scholar : PubMed/NCBI | |
Katono K, Sato Y, Jiang SX, Kobayashi M, Saito K, Nagashio R, Ryuge S, Satoh Y, Saegusa M and Masuda N: Clinicopathological significance of S100A10 expression in lung adenocarcinomas. Asian Pac J Cancer Prev. 17:289–294. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao JT, Chi BJ, Sun Y, Chi NN, Zhang XM, Sun JB, Chen Y and Xia Y: LINC00174 is an oncogenic lncRNA of hepatocellular carcinoma and regulates miR-320/S100A10 axis. Cell Biochem Funct. 38:859–869. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li XY, Li LX, Zhou RC, Sikong Y, Gu X, Jin BY, Li B, Li YQ and Zuo XL: S100A10 accelerates aerobic glycolysis and malignant growth by activating mTOR-signaling pathway in gastric cancer. Front Cell Dev Biol. 8:5594862020. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhang C, Li X, Shen J, Xu Y, Shi H, Mu X, Pan J, Zhao T, Li M, et al: CPT1A-mediated succinylation of S100A10 increases human gastric cancer invasion. J Cell Mol Med. 23:293–305. 2019. View Article : Google Scholar : PubMed/NCBI | |
Koh SA and Lee KH: HGF-mediated S100A11 overexpression enhances proliferation and invasion of gastric cancer. Am J Transl Res. 10:3385–3394. 2018.PubMed/NCBI | |
Cui Y, Li L, Li Z, Yin J, Lane J, Ji J and Jiang WG: Dual effects of targeting S100A11 on suppressing cellular metastatic properties and sensitizing drug response in gastric cancer. Cancer Cell Int. 21:2432021. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Yu X, Zhao Y, Huang J, Li T, Chen H, Zhou J, Huang Z and Yang Z: ADAMTS19 suppresses cell migration and invasion by targeting S100A16 via the NF-κB pathway in human gastric cancer. Biomolecules. 11:5612021. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Hou H, Lei H, Nie C, Chen B, Bie L, Han L and Chen X: MicroRNA-6884-5p regulates the proliferation, invasion, and EMT of gastric cancer cells by directly targeting S100A16. Oncol Res. 28:225–236. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Song L, Liu M, Ge R, Zhou Q, Liu W, Li R, Qie J, Zhen B, Wang Y, et al: A proteomics landscape of circadian clock in mouse liver. Nat Commun. 9:15532018. View Article : Google Scholar : PubMed/NCBI | |
Kang JH, Toita R and Murata M: Liver cell-targeted delivery of therapeutic molecules. Crit Rev Biotechnol. 36:132–143. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N and Zhao Y: Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 10:2993–3036. 2020.PubMed/NCBI | |
Liu Z, Liu H, Pan H, Du Q and Liang J: Clinicopathological significance of S100A4 expression in human hepatocellular carcinoma. J Int Med Res. 41:457–462. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhai X, Zhu H, Wang W, Zhang S, Zhang Y and Mao G: Abnormal expression of EMT-related proteins, S100A4, vimentin and E-cadherin, is correlated with clinicopathological features and prognosis in HCC. Med Oncol. 31:9702014. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang DL, Jiao XL and Dong Q: S100A4 regulates migration and invasion in hepatocellular carcinoma HepG2 cells via NF-κB-dependent MMP-9 signal. Eur Rev Med Pharmacol Sci. 17:2372–2382. 2013.PubMed/NCBI | |
Grotterød I, Maelandsmo GM and Boye K: Signal transduction mechanisms involved in S100A4-induced activation of the transcription factor NF-kappaB. BMC Cancer. 10:2412010. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Wang J, Cao Z, Tang Y, Feng C and Huang F: Interaction of S100A1 with LATS1 promotes cell growth through regulation of the Hippo pathway in hepatocellular carcinoma. Int J Oncol. 53:592–602. 2018.PubMed/NCBI | |
Zhu K, Huang W, Wang W, Liao L, Li S, Yang S, Xu J, Li L, Meng M, Xie Y, et al: Up-regulation of S100A4 expression by HBx protein promotes proliferation of hepatocellular carcinoma cells and its correlation with clinical survival. Gene. 749:1446792020. View Article : Google Scholar : PubMed/NCBI | |
Cui JF, Liu YK, Pan BS, Song HY, Zhang Y, Sun RX, Chen J, Feng JT, Tang ZY, Yu YL, et al: Differential proteomic analysis of human hepatocellular carcinoma cell line metastasis-associated proteins. J Cancer Res Clin Oncol. 130:615–622. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schmidt-Hansen B, Ornås D, Grigorian M, Klingelhöfer J, Tulchinsky E, Lukanidin E and Ambartsumian N: Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene. 23:5487–5495. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, Chen HX, Yuan HF, Li ZW, Shi L, et al: Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: Role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology. 57:2274–2286. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Wang C, Hu B, Gao X, Zou T, Luo Q, Chen M, Fu Y, Sheng Y, Zhang K, et al: Exosomal S100A4 derived from highly metastatic hepatocellular carcinoma cells promotes metastasis by activating STAT3. Signal Transduct Target Ther. 6:1872021. View Article : Google Scholar : PubMed/NCBI | |
Hua Z, Chen J, Sun B, Zhao G, Zhang Y, Fong Y, Jia Z and Yao L: Specific expression of osteopontin and S100A6 in hepatocellular carcinoma. Surgery. 149:783–791. 2011. View Article : Google Scholar : PubMed/NCBI | |
Arai K, Yamada T and Nozawa R: Immunohistochemical investigation of migration inhibitory factor-related protein (MRP)-14 expression in hepatocellular carcinoma. Med Oncol. 17:183–188. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kittaka N, Takemasa I, Takeda Y, Marubashi S, Nagano H, Umeshita K, Dono K, Matsubara K, Matsuura N and Monden M: Molecular mapping of human hepatocellular carcinoma provides deeper biological insight from genomic data. Eur J Cancer. 44:885–897. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sobolewski C, Abegg D, Berthou F, Dolicka D, Calo N, Sempoux C, Fournier M, Maeder C, Ay AS, Clavien PA, et al: S100A11/ANXA2 belongs to a tumour suppressor/oncogene network deregulated early with steatosis and involved in inflammation and hepatocellular carcinoma development. Gut. 69:1841–1854. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Yao R, Chen J, Zou Q and Zeng L: S100 family members: Potential therapeutic target in patients with hepatocellular carcinoma: A STROBE study. Medicine (Baltimore). 100:e241352021. View Article : Google Scholar : PubMed/NCBI | |
Song D, Xu B, Shi D, Li S and Cai Y: S100A6 promotes proliferation and migration of HepG2 cells via increased ubiquitin-dependent degradation of p53. Open Med (Wars). 15:317–326. 2020. View Article : Google Scholar : PubMed/NCBI | |
Németh J, Stein I, Haag D, Riehl A, Longerich T, Horwitz E, Breuhahn K, Gebhardt C, Schirmacher P, Hahn M, et al: S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology. 50:1251–1262. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liao J, Li JZ, Xu J, Xu Y, Wen WP, Zheng L and Li L: High S100A9+ cell density predicts a poor prognosis in hepatocellular carcinoma patients after curative resection. Aging (Albany NY). 13:16367–16380. 2021. View Article : Google Scholar : PubMed/NCBI | |
Duan L, Wu R, Zhang X, Wang D, You Y, Zhang Y, Zhou L and Chen W: HBx-induced S100A9 in NF-κB dependent manner promotes growth and metastasis of hepatocellular carcinoma cells. Cell Death Dis. 9:6292018. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Xie H, Long X, Zhou M, Xu Z, Shi B, Jiang H and Li Z: EGFRvIII mediates hepatocellular carcinoma cell invasion by promoting S100 calcium binding protein A11 expression. PLoS One. 8:e833322013. View Article : Google Scholar : PubMed/NCBI | |
Zheng M, Meng H, Li Y, Shi J, Han Y, Zhao C, Chen J, Han J, Liang J, Chen Y, et al: S100A11 promotes metastasis via AKT and ERK signaling pathways and has a diagnostic role in hepatocellular carcinoma. Int J Med Sci. 20:318–328. 2023. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bachet JB, Maréchal R, Demetter P, Bonnetain F, Cros J, Svrcek M, Bardier-Dupas A, Hammel P, Sauvanet A, Louvet C, et al: S100A2 is a predictive biomarker of adjuvant therapy benefit in pancreatic adenocarcinoma. Eur J Cancer. 49:2643–2653. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wang C, Song J, Xu R, Ruze R and Zhao Y: S100A2 is a prognostic biomarker involved in immune infiltration and predict immunotherapy response in pancreatic cancer. Front Immunol. 12:7580042021. View Article : Google Scholar : PubMed/NCBI | |
Che P, Yang Y, Han X, Hu M, Sellers JC, Londono-Joshi AI, Cai GQ, Buchsbaum DJ, Christein JD, Tang Q, et al: S100A4 promotes pancreatic cancer progression through a dual signaling pathway mediated by Src and focal adhesion kinase. Sci Rep. 5:84532015. View Article : Google Scholar : PubMed/NCBI | |
Tsukamoto N, Egawa S, Akada M, Abe K, Saiki Y, Kaneko N, Yokoyama S, Shima K, Yamamura A, Motoi F, et al: The expression of S100A4 in human pancreatic cancer is associated with invasion. Pancreas. 42:1027–1033. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jia F, Liu M, Li X, Zhang F, Yue S and Liu J: Relationship between S100A4 protein expression and pre-operative serum CA19.9 levels in pancreatic carcinoma and its prognostic significance. World J Surg Oncol. 17:1632019. View Article : Google Scholar : PubMed/NCBI | |
Woo T, Okudela K, Mitsui H, Tajiri M, Rino Y, Ohashi K and Masuda M: Up-regulation of S100A11 in lung adenocarcinoma-its potential relationship with cancer progression. PLoS One. 10:e01426422015. View Article : Google Scholar : PubMed/NCBI | |
Anania MC, Miranda C, Vizioli MG, Mazzoni M, Cleris L, Pagliardini S, Manenti G, Borrello MG, Pierotti MA and Greco A: S100A11 overexpression contributes to the malignant phenotype of papillary thyroid carcinoma. J Clin Endocrinol Metab. 98:E1591–E1600. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xiao MB, Jiang F, Ni WK, Chen BY, Lu CH, Li XY and Ni RZ: High expression of S100A11 in pancreatic adenocarcinoma is an unfavorable prognostic marker. Med Oncol. 29:1886–1891. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xiao M, Li T, Ji Y, Jiang F, Ni W, Zhu J, Bao B, Lu C and Ni R: S100A11 promotes human pancreatic cancer PANC-1 cell proliferation and is involved in the PI3K/AKT signaling pathway. Oncol Lett. 15:175–182. 2018.PubMed/NCBI | |
Ji YF, Li T, Jiang F, Ni WK, Guan CQ, Liu ZX, Lu CH, Ni RZ, Wu W and Xiao MB: Correlation between S100A11 and the TGF-β1/SMAD4 pathway and its effects on the proliferation and apoptosis of pancreatic cancer cell line PANC-1. Mol Cell Biochem. 450:53–64. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takamatsu H, Yamamoto KI, Tomonobu N, Murata H, Inoue Y, Yamauchi A, Sumardika IW, Chen Y, Kinoshita R, Yamamura M, et al: Extracellular S100A11 plays a critical role in spread of the fibroblast population in pancreatic cancers. Oncol Res. 27:713–727. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pietas A, Schlüns K, Marenholz I, Schäfer BW, Heizmann CW and Petersen I: Molecular cloning and characterization of the human S100A14 gene encoding a novel member of the S100 family. Genomics. 79:513–522. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Gao W, Li X, Yu L, Luo D, Liu Y and Yu X: S100A14 promotes progression and gemcitabine resistance in pancreatic cancer. Pancreatology. 21:589–598. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhuang H, Chen X, Dong F, Zhang Z, Zhou Z, Ma Z, Huang S, Chen B, Zhang C and Hou B: Prognostic values and immune suppression of the S100A family in pancreatic cancer. J Cell Mol Med. 25:3006–3018. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen Y, Xinpeng Y, Xu R, Song J, Ruze R, Xu Q and Zhao Y: Construction of immune-related signature and identification of S100A14 determining immune-suppressive microenvironment in pancreatic cancer. BMC Cancer. 22:8792022. View Article : Google Scholar : PubMed/NCBI | |
Fang D, Zhang C, Xu P, Liu Y, Mo X, Sun Q, Abdelatty A, Hu C, Xu H, Zhou G, et al: S100A16 promotes metastasis and progression of pancreatic cancer through FGF19-mediated AKT and ERK1/2 pathways. Cell Biol Toxicol. 37:555–571. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Xia DM, Qian C and Liu SR: Integrated analysis identifies S100A16 as a potential prognostic marker for pancreatic cancer. Am J Transl Res. 13:5720–5730. 2021.PubMed/NCBI | |
Li T, Ren T, Huang C, Li Y, Yang P, Che G, Luo L, Chen Y, Peng S, Lin Y and Zeng L: S100A16 induces epithelial-mesenchymal transition in human PDAC cells and is a new therapeutic target for pancreatic cancer treatment that synergizes with gemcitabine. Biochem Pharmacol. 189:1143962021. View Article : Google Scholar : PubMed/NCBI | |
Borroni EM, Savino B, Bonecchi R and Locati M: Chemokines sound the alarmin: The role of atypical chemokine in inflammation and cancer. Semin Immunol. 38:63–71. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tu G, Gao W, Li Y, Dian Y, Xue B, Niu L, Yu X and Zhu H: Expressional and prognostic value of S100A16 in pancreatic cancer via integrated bioinformatics analyses. Front Cell Dev Biol. 9:6456412021. View Article : Google Scholar : PubMed/NCBI | |
Baidoun F, Elshiwy K, Elkeraie Y, Merjaneh Z, Khoudari G, Sarmini MT, Gad M, Al-Husseini M and Saad A: Colorectal cancer epidemiology: Recent trends and impact on outcomes. Curr Drug Targets. 22:998–1009. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fukuda Y, Tanaka Y, Eto K, Ukai N, Sonobe S, Takahashi H, Ikegami M and Shimoda M: S100-stained perineural invasion is associated with worse prognosis in stage I/II colorectal cancer: Its possible association with immunosuppression in the tumor. Pathol Int. 72:117–127. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kaya T and Dursun A: Can lymphovascular and perineural invasion be additional staging criteria in colorectal cancer? J Coll Physicians Surg Pak. 31:657–662. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alotaibi AM, Lee JL, Kim J, Lim SB, Yu CS, Kim TW, Kim JH and Kim JC: Prognostic and oncologic significance of perineural invasion in sporadic colorectal cancer. Ann Surg Oncol. 24:1626–1634. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hatthakarnkul P, Ammar A, Pennel KAF, Officer-Jones L, Cusumano S, Quinn JA, Matly AAM, Alexander PG, Hay J, Andersen D, et al: Protein expression of S100A2 reveals it association with patient prognosis and immune infiltration profile in colorectal cancer. J Cancer. 14:1837–1847. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Zeng Z, Li L, Lei S, Wu Y, Chen T and Zhang J: Sinapine thiocyanate exhibited anti-colorectal cancer effects by inhibiting KRT6A/S100A2 axis. Cancer Biol Ther. 24:22491702023. View Article : Google Scholar : PubMed/NCBI | |
Schwartz L, Seyfried T, Alfarouk KO, Da Veiga Moreira J and Fais S: Out of Warburg effect: An effective cancer treatment targeting the tumor specific metabolism and dysregulated pH. Semin Cancer Biol. 43:134–138. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li C, Chen Q, Zhou Y, Niu Y, Wang X, Li X, Zheng H, Wei T, Zhao L and Gao H: S100A2 promotes glycolysis and proliferation via GLUT1 regulation in colorectal cancer. FASEB J. 34:13333–13344. 2020. View Article : Google Scholar : PubMed/NCBI | |
Destek S and Gul VO: S100A4 may be a good prognostic marker and a therapeutic target for colon cancer. J Oncol. 2018:18287912018. View Article : Google Scholar : PubMed/NCBI | |
Dahlmann M, Kobelt D, Walther W, Mudduluru G and Stein U: S100A4 in cancer metastasis: Wnt signaling-driven interventions for metastasis restriction. Cancers (Basel). 8:592016. View Article : Google Scholar : PubMed/NCBI | |
Boye K and Maelandsmo GM: S100A4 and metastasis: A small actor playing many roles. Am J Pathol. 176:528–535. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hsieh YY, Cheng YW, Wei PL and Yang PM: Repurposing of ingenol mebutate for treating human colorectal cancer by targeting S100 calcium-binding protein A4 (S100A4). Toxicol Appl Pharmacol. 449:1161342022. View Article : Google Scholar : PubMed/NCBI | |
Ghoul A, Serova M, Astorgues-Xerri L, Bieche I, Bousquet G, Varna M, Vidaud M, Phillips E, Weill S, Benhadji KA, et al: Epithelial-to-mesenchymal transition and resistance to ingenol 3-angelate, a novel protein kinase C modulator, in colon cancer cells. Cancer Res. 69:4260–4269. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sack U, Walther W, Scudiero D, Selby M, Aumann J, Lemos C, Fichtner I, Schlag PM, Shoemaker RH and Stein U: S100A4-induced cell motility and metastasis is restricted by the Wnt/β-catenin pathway inhibitor calcimycin in colon cancer cells. Mol Biol Cell. 22:3344–3354. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hernández-Maqueda JG, Luna-Ulloa LB, Santoyo-Ramos P, Castañeda-Patlán MC and Robles-Flores M: Protein kinase C delta negatively modulates canonical Wnt pathway and cell proliferation in colon tumor cell lines. PLoS One. 8:e585402013. View Article : Google Scholar : PubMed/NCBI | |
Schöpe PC, Zinnow V, Ishfaq MA, Smith J, Herrmann P, Shoemaker RH, Walther W and Stein U: Cantharidin and its analogue norcantharidin inhibit metastasis-inducing genes S100A4 and MACC1. Int J Mol Sci. 24:11792023. View Article : Google Scholar : PubMed/NCBI | |
Srikrishna G: S100A8 and S100A9: New insights into their roles in malignancy. J Innate Immun. 4:31–40. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li S, Xu F, Li H, Zhang J, Zhong A, Huang B and Lai M: S100A8+ stroma cells predict a good prognosis and inhibit aggressiveness in colorectal carcinoma. Oncoimmunology. 6:e12602132016. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhang J, Qian S, Wu X, Sun L, Ling T, Jin Y, Li W, Sun L, Lai M and Xu F: S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-β/USF2 axis in colorectal cancer. Cancer Commun (Lond). 41:154–170. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hashida H and Coffey RJ: Significance of a calcium-binding protein S100A14 expression in colon cancer progression. J Gastrointest Oncol. 13:149–162. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Wang T, Zhang C, Ning K, Guan ZR, Chen SX, Hong TT and Hua D: S100A16 is a prognostic marker for colorectal cancer. J Surg Oncol. 117:275–283. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ou S, Liao Y, Shi J, Tang J, Ye Y, Wu F, Wang W, Fei J, Xie F and Bai L: S100A16 suppresses the proliferation, migration and invasion of colorectal cancer cells in part via the JNK/p38 MAPK pathway. Mol Med Rep. 23:1642021. View Article : Google Scholar : PubMed/NCBI | |
Sood A, Mishra D, Kharbanda OP, Chauhan SS, Gupta SD, Deo SSV, Yadav R, Ralhan R, Kumawat R and Kaur H: Role of S100 A7 as a diagnostic biomarker in oral potentially malignant disorders and oral cancer. J Oral Maxillofac Pathol. 26:166–172. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tanigawa K, Tsukamoto S, Koma YI, Kitamura Y, Urakami S, Shimizu M, Fujikawa M, Kodama T, Nishio M, Shigeoka M, et al: S100A8/A9 induced by interaction with macrophages in esophageal squamous cell carcinoma promotes the migration and invasion of cancer cells via Akt and p38 MAPK pathways. Am J Pathol. 192:536–552. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhong C, Niu Y, Liu W, Yuan Y, Li K, Shi Y, Qiu Z, Li K, Lin Z, Huang Z, et al: S100A9 derived from chemoembolization-induced hypoxia governs mitochondrial function in hepatocellular carcinoma progression. Adv Sci (Weinh). 9:e22022062022. View Article : Google Scholar : PubMed/NCBI | |
Low RRJ, Fung KY, Gao H, Preaudet A, Dagley LF, Yousef J, Lee B, Emery-Corbin SJ, Nguyen PM, Larsen RH, et al: S100 family proteins are linked to organoid morphology and EMT in pancreatic cancer. Cell Death Differ. 30:1155–1165. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dong JX, Zhang LF, Liu DB, Li ZG, Gao F, Wang LP and Dong JH: Circular ribonucleic acid circ-FADS2 promotes colorectal cancer cell proliferation and invasion by regulating miR-498/S100A16. J Physiol Pharmacol. 73:2022. | |
Treese C, Hartl K, Pötzsch M, Dahlmann M, von Winterfeld M, Berg E, Hummel M, Timm L, Rau B, Walther W, et al: S100A4 is a strong negative prognostic marker and potential therapeutic target in adenocarcinoma of the stomach and esophagus. Cells. 11:10562022. View Article : Google Scholar : PubMed/NCBI | |
Liao WC, Chen CT, Tsai YS, Wang XY, Chang YT, Wu MS and Chow LP: S100A8, S100A9 and S100A8/A9 heterodimer as novel cachexigenic factors for pancreatic cancer-induced cachexia. BMC Cancer. 23:5132023. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Guo H, Liu Z, Qin Z, Cong Y, Ren N, Zhang Y and Zhang N: S100A11 activates the pentose phosphate pathway to induce malignant biological behaviour of pancreatic ductal adenocarcinoma. Cell Death Dis. 13:5682022. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Shi M, Cao J, Yuan T, Yu G, Chen Y, Fang W and Li H: S100 calcium binding protein A10, a novel oncogene, promotes the proliferation, invasion, and migration of hepatocellular carcinoma. Front Genet. 12:6950362021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Huang H, Sze KM, Wang J, Tian L, Lu J, Tsui YM, Ma HT, Lee E, Chen A, et al: S100A10 promotes HCC development and progression via transfer in extracellular vesicles and regulating their protein cargos. Gut. 72:1370–1384. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Fu C, Liu J, Li S and Zheng J: Knockdown of LPCAT1 repressed hepatocellular carcinoma growth and invasion by targeting S100A11. Ann Clin Lab Sci. 53:212–221. 2023.PubMed/NCBI | |
Lin H, Yang P, Li B, Chang Y, Chen Y, Li Y, Liu K, Liang X, Chen T, Dai Y, et al: S100A10 promotes pancreatic ductal adenocarcinoma cells proliferation, migration and adhesion through JNK/LAMB3-LAMC2 axis. Cancers (Basel). 15:2022022. View Article : Google Scholar : PubMed/NCBI |