1
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012.
|
2
|
Stockwell BR, Friedmann Angeli JP, Bayir
H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK,
Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking
metabolism, redox biology, and disease. Cell. 171:273–285.
2017.
|
3
|
Seibt TM, Proneth B and Conrad M: Role of
GPX4 in ferroptosis and its pharmacological implication. Free Radic
Biol Med. 133:144–152. 2019.
|
4
|
Bersuker K, Hendricks JM, Li Z, Magtanong
L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al:
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit
ferroptosis. Nature. 575:688–692. 2019.
|
5
|
Doll S, Freitas FP, Shah R, Aldrovandi M,
da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius
E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis
suppressor. Nature. 575:693–698. 2019.
|
6
|
Kraft VAN, Bezjian CT, Pfeiffer S,
Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X,
Anastasov N, Kössl J, et al: GTP cyclohydrolase
1/tetrahydrobiopterin counteract ferroptosis through lipid
remodeling. ACS Cent Sci. 6:41–53. 2020.
|
7
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee
H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated
ferroptosis defence is a targetable vulnerability in cancer.
Nature. 593:586–590. 2021.
|
8
|
Dolma S, Lessnick SL, Hahn WC and
Stockwell BR: Identification of genotype-selective antitumor agents
using synthetic lethal chemical screening in engineered human tumor
cells. Cancer Cell. 3:285–296. 2003.
|
9
|
Yang WS and Stockwell BR: Synthetic lethal
screening identifies compounds activating iron-dependent,
nonapoptotic cell death in oncogenic-RAS-harboring cancer cells.
Chem Biol. 15:234–245. 2008.
|
10
|
Miotto G, Rossetto M, Di Paolo ML, Orian
L, Venerando R, Roveri A, Vučković AM, Bosello Travain V, Zaccarin
M, Zennaro L, et al: Insight into the mechanism of ferroptosis
inhibition by ferrostatin-1. Redox Biol. 28:1013282020.
|
11
|
Hassannia B, Vandenabeele P and Vanden
Berghe T: Targeting ferroptosis to iron out cancer. Cancer Cell.
35:830–849. 2019.
|
12
|
Lei G, Zhuang L and Gan B: Targeting
ferroptosis as a vulnerability in cancer. Nat Rev Cancer.
22:381–396. 2022.
|
13
|
Kino T, Hurt DE, Ichijo T, Nader N and
Chrousos GP: Noncoding RNA gas5 is a growth arrest- and
starvation-associated repressor of the glucocorticoid receptor. Sci
Signal. 3:ra82010.
|
14
|
Karreth FA, Tay Y, Perna D, Ala U, Tan SM,
Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, et al:
In vivo identification of tumor-suppressive PTEN ceRNAs in an
oncogenic BRAF-induced mouse model of melanoma. Cell. 147:382–395.
2011.
|
15
|
Tsai MC, Manor O, Wan Y, Mosammaparast N,
Wang JK, Lan F, Shi Y, Segal E and Chang HY: Long noncoding RNA as
modular scaffold of histone modification complexes. Science.
329:689–693. 2010.
|
16
|
Huarte M: The emerging role of lncRNAs in
cancer. Nat Med. 21:1253–1261. 2015.
|
17
|
Zhang R, Pan T, Xiang Y, Zhang M, Xie H,
Liang Z, Chen B, Xu C, Wang J, Huang X, et al: Curcumenol triggered
ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1
axis. Bioact Mater. 13:23–36. 2021.
|
18
|
Qin Y, Zhang D, Zhang H, Hou L, Wang Z,
Yang L, Zhang M, Zhao G, Yao Q, Ling R and Zhang J: Construction of
a ferroptosis-related five-lncRNA signature for predicting
prognosis and immune response in thyroid carcinoma. Cancer Cell
Int. 22:2962022.
|
19
|
Thai P, Statt S, Chen CH, Liang E,
Campbell C and Wu R: Characterization of a novel long noncoding
RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer
cell lines. Am J Respir Cell Mol Biol. 49:204–211. 2013.
|
20
|
Jiao Y, Li Y, Ji B, Cai H and Liu Y:
Clinical value of lncRNA LUCAT1 expression in liver cancer and its
potential pathways. J Gastrointestin Liver Dis. 28:439–447.
2019.
|
21
|
Chi J, Liu T, Shi C, Luo H, Wu Z, Xiong B,
Liu S and Zeng Y: Long non-coding RNA LUCAT1 promotes proliferation
and invasion in gastric cancer by regulating miR-134-5p/YWHAZ axis.
Biomed Pharmacother. 118:1092012019.
|
22
|
Huan L, Guo T, Wu Y, Xu L, Huang S, Xu Y,
Liang L and He X: Hypoxia induced LUCAT1/PTBP1 axis modulates
cancer cell viability and chemotherapy response. Mol Cancer.
19:112020.
|
23
|
Zhou Q, Hou Z, Zuo S, Zhou X, Feng Y, Sun
Y and Yuan X: LUCAT1 promotes colorectal cancer tumorigenesis by
targeting the ribosomal protein L40-MDM2-p53 pathway through
binding with UBA52. Cancer Sci. 110:1194–1207. 2019.
|
24
|
Wang Y, Li Z, Li W, Zhou L and Jiang Y:
Prognostic significance of long non-coding RNAs in clear cell renal
cell carcinoma: A meta-analysis. Medicine (Baltimore).
98:e172762019.
|
25
|
Shu X, Zhang Z, Yao ZY and Xing XL:
Identification of five ferroptosis-related lncRNAs as novel
prognosis and diagnosis signatures for renal cancer. Front Mol
Biosci. 8:7636972022.
|
26
|
Xing XL, Yao ZY, Ou J, Xing C and Li F:
Development and validation of ferroptosis-related lncRNAs prognosis
signatures in kidney renal clear cell carcinoma. Cancer Cell Int.
21:5912021.
|
27
|
He Y, Ye Y, Tian W and Qiu H: A novel
lncRNA panel related to ferroptosis, tumor progression, and
microenvironment is a robust prognostic indicator for glioma
patients. Front Cell Dev Biol. 9:7884512021.
|
28
|
Deng SH, Wu DM, Li L, Liu T, Zhang T, Li
J, Yu Y, He M, Zhao YY, Han R and Xu Y: miR-324-3p reverses
cisplatin resistance by inducing GPX4-mediated ferroptosis in lung
adenocarcinoma cell line A549. Biochem Biophys Res Commun.
549:54–60. 2021.
|
29
|
Lei G, Zhang Y, Koppula P, Liu X, Zhang J,
Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of
ferroptosis in ionizing radiation-induced cell death and tumor
suppression. Cell Res. 30:146–162. 2020.
|
30
|
Zhou Y, Zhou B, Pache L, Chang M,
Khodabakhshi AH, Tanaseichuk O, Benner C and Chanda SK: Metascape
provides a biologist-oriented resource for the analysis of
systems-level datasets. Nat Commun. 10:15232019.
|
31
|
Wang P, Guo Q, Qi Y, Hao Y, Gao Y, Zhi H,
Zhang Y, Sun Y, Zhang Y, Xin M, et al: LncACTdb 3.0: An updated
database of experimentally supported ceRNA interactions and
personalized networks contributing to precision medicine. Nucleic
Acids Res. 50(D1): D183–D189. 2022.
|
32
|
Li T, Chen B, Yang P, Wang D, Du B and
Kang L: Long non-coding RNA derived from lncRNA-mRNA co-expression
networks modulates the locust phase change. Genomics Proteomics
Bioinformatics. 18:664–678. 2020.
|
33
|
Lin Y, Pan X and Shen HB: lncLocator 2.0:
A cell-line-specific subcellular localization predictor for long
non-coding RNAs with interpretable deep learning. Bioinformatics.
37:2308–2316. 2021.
|
34
|
Zhang X, Du L, Qiao Y, Zhang X, Zheng W,
Wu Q, Chen Y, Zhu G, Liu Y, Bian Z, et al: Ferroptosis is governed
by differential regulation of transcription in liver cancer. Redox
Biol. 24:1012112019.
|
35
|
Gao R, Buechel D, Kalathur RKR, Morini MF,
Coto-Llerena M, Ercan C, Piscuoglio S, Chen Q, Blumer T, Wang X, et
al: USP29-mediated HIF1α stabilization is associated with sorafenib
resistance of hepatocellular carcinoma cells by upregulating
glycolysis. Oncogenesis. 10:522021.
|
36
|
Karagkouni D, Paraskevopoulou MD,
Tastsoglou S, Skoufos G, Karavangeli A, Pierros V, Zacharopoulou E
and Hatzigeorgiou AG: DIANA-LncBase v3: Indexing experimentally
supported miRNA targets on non-coding transcripts. Nucleic Acids
Res. 48(D1): D101–D110. 2020.
|
37
|
Chen Y and Wang X: miRDB: An online
database for prediction of functional microRNA targets. Nucleic
Acids Res. 48(D1): D127–D131. 2020.
|
38
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
|
39
|
Yang WS, SriRamaratnam R, Welsch ME,
Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji
AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by
GPX4. Cell. 156:317–331. 2014.
|
40
|
Jiang L, Kon N, Li T, Wang SJ, Su T,
Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated
activity during tumour suppression. Nature. 520:57–62. 2015.
|
41
|
Kwon MY, Park E, Lee SJ and Chung SW: Heme
oxygenase-1 accelerates erastin-induced ferroptotic cell death.
Oncotarget. 6:24393–24403. 2015.
|
42
|
Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X,
Li X, Zhao C, Kuang W, Chen D and Zhu M: FTH1 inhibits ferroptosis
through ferritinophagy in the 6-OHDA model of Parkinson's disease.
Neurotherapeutics. 17:1796–1812. 2020.
|
43
|
Dong H, Zhang C, Shi D, Xiao X, Chen X,
Zeng Y, Li X and Xie R: Ferroptosis related genes participate in
the pathogenesis of spinal cord injury via HIF-1 signaling pathway.
Brain Res Bull. 192:192–202. 2023.
|
44
|
Cao Y, Luo F, Peng J, Fang Z, Liu Q and
Zhou S: KMT2B-dependent RFK transcription activates the TNF-α/NOX2
pathway and enhances ferroptosis caused by myocardial
ischemia-reperfusion. J Mol Cell Cardiol. 173:75–91. 2022.
|
45
|
Liu H, Zhang B, Chen S, Zhang Y, Ye X, Wei
Y, Zhong G and Zhang L: Identification of ferroptosis-associated
genes exhibiting altered expression in response to cardiopulmonary
bypass during corrective surgery for pediatric tetralogy of fallot.
Sci Prog. 104:3685042110502752021.
|
46
|
Koyanagi A, Kotani H, Iida Y, Tanino R,
Kartika ID, Kishimoto K and Harada M: Protective roles of
cytoplasmic p21Cip1/Waf1 in senolysis and ferroptosis of
lung cancer cells. Cell Prolif. 55:e133262022.
|
47
|
Deng H, Lin Y, Gan F, Li B, Mou Z, Qin X,
He X and Meng Y: Prognostic model and immune infiltration of
ferroptosis subcluster-related modular genes in gastric cancer. J
Oncol. 2022:58135222022.
|
48
|
Jehl A, Conrad O, Burgy M, Foppolo S,
Vauchelles R, Ronzani C, Etienne-Selloum N, Chenard MP, Danic A,
Dourlhes T, et al: Blocking EREG/GPX4 sensitizes head and neck
cancer to cetuximab through ferroptosis induction. Cells.
12:7332023.
|
49
|
Ji HZ, Chen L, Ren M, Li S, Liu TY, Chen
HJ, Yu HH and Sun Y: CXCL8 promotes endothelial-to-mesenchymal
transition of endothelial cells and protects cells from
Erastin-induced ferroptosis via CXCR2-mediated activation of the
NF-κB signaling pathway. Pharmaceuticals (Basel). 16:12102023.
|
50
|
Sun K, Hou L, Guo Z, Wang G, Guo J, Xu J,
Zhang X and Guo F: JNK-JUN-NCOA4 axis contributes to chondrocyte
ferroptosis and aggravates osteoarthritis via ferritinophagy. Free
Radic Biol Med. 200:87–101. 2023.
|
51
|
Ko J, Jang S, Kwon W, Kim SY, Jang S, Kim
E, Ji YR, Park S, Kim MO, Choi SK, et al: Protective effect of GIP
against monosodium glutamate-induced ferroptosis in mouse
hippocampal HT-22 cells through the MAPK signaling pathway.
Antioxidants (Basel). 11:1892022.
|
52
|
Zhu L, Cao P, Yang S, Lin F and Wang J:
Prolonged exposure to environmental levels of microcystin-LR
triggers ferroptosis in brain via the activation of Erk/MAPK
signaling pathway. Ecotoxicol Environ Saf. 267:1156512023.
|
53
|
Wang W, Zhu L, Li H, Ren W, Zhuo R, Feng
C, He Y, Hu Y and Ye C: Alveolar macrophage-derived exosomal
tRF-22-8BWS7K092 activates Hippo signaling pathway to induce
ferroptosis in acute lung injury. Int Immunopharmacol.
107:1086902022.
|
54
|
Chen J, Chen Z, Yu D, Yan Y, Hao X, Zhang
M and Zhu T: Neuroprotective effect of hydrogen sulfide subchronic
treatment against TBI-induced ferroptosis and cognitive deficits
mediated through Wnt signaling pathway. Cell Mol Neurobiol.
43:4117–4140. 2023.
|
55
|
Liu L, Wang M, Gong N, Tian P and Deng H:
Se improves GPX4 expression and SOD activity to alleviate
heat-stress-induced ferroptosis-like death in goat mammary
epithelial cells. Anim Cells Syst (Seoul). 25:283–295. 2021.
|
56
|
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan
X and Wu C: Application of glutathione depletion in cancer therapy:
Enhanced ROS-based therapy, ferroptosis, and chemotherapy.
Biomaterials. 277:1211102021.
|
57
|
Matsui M and Corey DR: Non-coding RNAs as
drug targets. Nat Rev Drug Discov. 16:167–179. 2017.
|
58
|
Chen X, Kang R, Kroemer G and Tang D:
Broadening horizons: The role of ferroptosis in cancer. Nat Rev
Clin Oncol. 18:280–296. 2021.
|
59
|
Qi L, Wang Y, Su S, Wang M, Jablonska E,
Jia Y, Wang R, Hao S, Feng C, Li G, et al: Sodium selenite inhibits
cervical cancer growth via ROS mediated AMPK/FOXO3a/GADD45a axis.
Chem Biol Interact. 367:1101712022.
|
60
|
Zhang Y, Luo M, Cui X, O'Connell D and
Yang Y: Long noncoding RNA NEAT1 promotes ferroptosis by modulating
the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ.
29:1850–1863. 2022.
|
61
|
Wang S, Chen J, Li P and Chen Y: LINC01133
can induce acquired ferroptosis resistance by enhancing the FSP1
mRNA stability through forming the LINC01133-FUS-FSP1 complex. Cell
Death Dis. 14:7672023.
|
62
|
Bhattacharjee S, Li J and Dashwood RH:
Emerging crosstalk between long non-coding RNAs and Nrf2 signaling.
Cancer Lett. 490:154–164. 2020.
|
63
|
Zhang L, Liu SK, Song L and Yao HR:
SP1-induced up-regulation of lncRNA LUCAT1 promotes proliferation,
migration and invasion of cervical cancer by sponging miR-181a.
Artif Cells Nanomed Biotechnol. 47:556–564. 2019.
|
64
|
Wang X, Guo S, Zhao R, Liu Y and Yang G:
STAT3-activated long non-coding RNA lung cancer associated
transcript 1 drives cell proliferation, migration, and invasion in
hepatoblastoma through regulation of the miR-301b/STAT3 axis. Hum
Gene Ther. 30:702–713. 2019.
|
65
|
Wang L, Tang D, Wu T and Sun F:
ELF1-mediated LUCAT1 promotes choroidal melanoma by modulating RBX1
expression. Cancer Med. 9:2160–2170. 2020.
|
66
|
Wang L, Xie Y, Wang J, Zhang Y, Liu S,
Zhan Y, Zhao Y, Li J, Li P and Wang C: Characterization of a novel
LUCAT1/miR-4316/VEGF-A axis in metastasis and glycolysis of lung
adenocarcinoma. Front Cell Dev Biol. 10:8335792022.
|
67
|
Sun Y, Jin SD, Zhu Q, Han L, Feng J, Lu
XY, Wang W, Wang F and Guo RH: Long non-coding RNA LUCAT1 is
associated with poor prognosis in human non-small lung cancer and
regulates cell proliferation via epigenetically repressing p21 and
p57 expression. Oncotarget. 8:28297–28311. 2017.
|
68
|
Gutierrez-Cruz JA, Maldonado V and
Melendez-Zajgla J: Regulation of the cancer stem phenotype by long
non-coding RNAs. Cells. 11:23522022.
|
69
|
Vierbuchen T, Agarwal S, Johnson JL, Galia
L, Lei X, Stein K, Olagnier D, Gaede KI, Herzmann C, Holm CK, et
al: The lncRNA LUCAT1 is elevated in inflammatory disease and
restrains inflammation by regulating the splicing and stability of
NR4A2. Proc Natl Acad Sci USA. 120:e22137151202023.
|
70
|
Tao Y, Liu Q, Wu R, Xiao C, Ni C, Wang K,
Hu W, Zhong Z, Zhao J, Li Q, et al: Long noncoding RNA LUCAT1
enhances the survival and therapeutic effects of mesenchymal
stromal cells post-myocardial infarction. Mol Ther Nucleic Acids.
27:412–426. 2021.
|
71
|
Zhang K, Wang Q, Zhong B and Gong Z:
LUCAT1 as an oncogene in tongue squamous cell carcinoma by
targeting miR-375 expression. J Cell Mol Med. 25:4543–4550.
2021.
|
72
|
Nai Y, Pan C, Hu X and Ma Y: LncRNA LUCAT1
contributes to cell proliferation and migration in human pancreatic
ductal adenocarcinoma via sponging miR-539. Cancer Med. 9:757–767.
2020.
|
73
|
Liu Z, Gao H, Peng Q and Yang Y: Long
noncoding RNA LUCAT1 promotes multiple myeloma cell growth by
regulating the TGF-β signaling pathway. Technol Cancer Res Treat.
19:15330338209457702020.
|
74
|
Mou E and Wang H: LncRNA LUCAT1
facilitates tumorigenesis and metastasis of triple-negative breast
cancer through modulating miR-5702. Biosci Rep.
39:BSR201904892019.
|
75
|
Luzón-Toro B, Fernández RM,
Martos-Martínez JM, Rubio-Manzanares-Dorado M, Antiñolo G and
Borrego S: LncRNA LUCAT1 as a novel prognostic biomarker for
patients with papillary thyroid cancer. Sci Rep. 9:143742019.
|
76
|
Shen Q, Xu Z and Xu S: Long non-coding RNA
LUCAT1 contributes to cisplatin resistance by regulating the
miR-514a-3p/ULK1 axis in human non-small cell lung cancer. Int J
Oncol. 57:967–979. 2020.
|
77
|
Han Z and Shi L: Long non-coding RNA
LUCAT1 modulates methotrexate resistance in osteosarcoma via
miR-200c/ABCB1 axis. Biochem Biophys Res Commun. 495:947–953.
2018.
|
78
|
Cronin SJF, Rao S, Tejada MA, Turnes BL,
Licht-Mayer S, Omura T, Brenneis C, Jacobs E, Barrett L,
Latremoliere A, et al: Phenotypic drug screen uncovers the
metabolic GCH1/BH4 pathway as key regulator of EGFR/KRAS-mediated
neuropathic pain and lung cancer. Sci Transl Med.
14:eabj15312022.
|
79
|
Sang L, Yang L, Ge Q, Xie S, Zhou T and
Lin A: Subcellular distribution, localization, and function of
noncoding RNAs. Wiley Interdiscip Rev RNA. 13:e17292022.
|
80
|
Li W, Pan T, Jiang W and Zhao H:
HCG18/miR-34a-5p/HMMR axis accelerates the progression of lung
adenocarcinoma. Biomed Pharmacother. 129:1102172020.
|
81
|
Hao R, Ge J, Song X, Li F, Sun-Waterhouse
D and Li D: Cadmium induces ferroptosis and apoptosis by modulating
miR-34a-5p/Sirt1axis in PC12 cells. Environ Toxicol. 37:41–51.
2022.
|