Investigating the molecular mechanisms of microRNA‑409‑3p in tumor progression: Towards targeted therapeutics (Review)
- Authors:
- Wenjie Xie
- Zhichao Wang
- Junke Wang
- Xiu Wang
- Hongzai Guan
-
Affiliations: Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China, Department of Cardiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China - Published online on: May 16, 2024 https://doi.org/10.3892/ijo.2024.5655
- Article Number: 67
-
Copyright: © Xie et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
This article is mentioned in:
Abstract
Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar : | |
Oliveto S, Mancino M, Manfrini N and Biffo S: Role of microRNAs in translation regulation and cancer. World J Biol Chem. 8:45–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines indicates that thousands of human genes are microRNA targets. Cell. 120:15–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK and Calin GA: MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat Rev Clin Oncol. 8:467–477. 2011. View Article : Google Scholar : PubMed/NCBI | |
Macfarlane LA and Murphy PR: MicroRNA: Biogenesis function and role in cancer. Curr Genomics. 11:537–561. 2010. View Article : Google Scholar | |
Croce CM and Calin GA: miRNAs, cancer, and stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bueno MJ and Malumbres M: MicroRNAs and the cell cycle. Biochim Biophys Acta. 1812:592–601. 2011. View Article : Google Scholar : PubMed/NCBI | |
Su Z, Yang Z, Xu Y, Chen Y and Yu Q: MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget. 6:8474–8490. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma L: MicroRNA and metastasis. Adv Cancer Res. 132:165–207. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tiwari A, Mukherjee B and Dixit M: MicroRNA key to angiogenesis regulation: MiRNA biology and therapy. Curr Cancer Drug Targets. 18:266–277. 2018. View Article : Google Scholar | |
Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T and Margalit H: Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33:2697–2706. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wan L, Zhu L, Xu J, Lu B, Yang Y, Liu F and Wang Z: MicroRNA-409-3p functions as a tumor suppressor in human lung adenocarcinoma by targeting c-Met. Cell Physiol Biochem. 34:1273–1290. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Wen W, Shan X, Zhu W, Xu J, Guo R, Cheng W, Wang F, Qi LW, Chen Y, et al: A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget. 8:6513–6525. 2017. View Article : Google Scholar : | |
Song Q, Ji Q, Xiao J, Li F, Wang L, Chen Y, Xu Y and Jiao S: miR-409 inhibits human non-small-cell lung cancer progression by directly targeting SPIN1. Mol Ther Nucleic Acids. 13:154–163. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qu R, Chen X and Zhang C: LncRNA ZEB1-AS1/miR-409-3p/ ZEB1 feedback loop is involved in the progression of non-small cell lung cancer. Biochem Biophys Res Commun. 507:450–456. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yin D, Hua L, Wang J, Liu Y and Li X: Long non-coding RNA DUXAP8 facilitates cell viability, migration, and glycolysis in non-small-cell lung cancer via regulating HK2 and LDHA by inhibition of miR-409-3p. Onco Targets Ther. 13:7111–7123. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Li B, Xu J, Hu S, Zhan N, Wang H, Gao C, Li J and Xu X: SOD1 promotes cell proliferation and metastasis in non-small cell lung cancer via an miR-409-3p/SOD1/SETDB1 epigenetic regulatory feedforward loop. Front Cell Dev Biol. 8:2132020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhang C, Peng X, Liu K, Zhao L, Chen X, Yu H and Lai Y: A combination of four serum miRNAs for screening of lung adenocarcinoma. Hum Cell. 33:830–838. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wu L and Pang J: Long noncoding RNA PSMA3-AS1 functions as a microRNA-409-3p sponge to promote the progression of non-small cell lung carcinoma by targeting spindlin 1. Oncol Rep. 44:1550–1560. 2020.PubMed/NCBI | |
Liu S, Zhan N, Gao C, Xu P, Wang H, Wang S, Piao S and Jing S: Long noncoding RNA CBR3-AS1 mediates tumorigenesis and radiosensitivity of non-small cell lung cancer through redox and DNA repair by CBR3-AS1/miR-409-3p/SOD1 axis. Cancer Lett. 526:1–11. 2022. View Article : Google Scholar | |
Yang X, Li M, Zhao Y, Tan X, Su J and Zhong X: Hsa_circ_0079530/AQP4 axis is related to non-small cell lung cancer development and radiosensitivity. Ann Thorac Cardiovasc Surg. 28:307–319. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cuk K, Zucknick M, Madhavan D, Schott S, Golatta M, Heil J, Marmé F, Turchinovich A, Sinn P, Sohn C, et al: Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS One. 8:e767292013. View Article : Google Scholar : PubMed/NCBI | |
Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A, Arlt D, Rath M, Sohn C, Benner A, et al: Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer. 132:1602–1612. 2013. View Article : Google Scholar | |
Li S, Meng H, Zhou F, Zhai L, Zhang L, Gu F, Fan Y, Lang R, Fu L, Gu L and Qi L: MicroRNA-132 is frequently down-regulated in ductal carcinoma in situ (DCIS) of breast and acts as a tumor suppressor by inhibiting cell proliferation. Pathol Res Pract. 209:179–183. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Hu Q, Schrauder M, Yan L, Wang D, Medico L, Guo Y, Yao S, Zhu Q, Liu B, et al: Circulating miR-148b and miR-133a as biomarkers for breast cancer detection. Oncotarget. 5:5284–5294. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Liu Z, Xu H and Yang Q: miR-409-3p suppresses breast cancer cell growth and invasion by targeting Akt1. Biochem Biophys Res Commun. 469:189–195. 2016. View Article : Google Scholar | |
Ma Z, Li Y, Xu J, Ren Q, Yao J and Tian X: MicroRNA-409-3p regulates cell invasion and metastasis by targeting ZEB1 in breast cancer. IUBMB Life. 68:394–402. 2016. View Article : Google Scholar : PubMed/NCBI | |
Venkatadri R, Muni T, Iyer AKV, Yakisich JS and Azad N: Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis. 7:e21042016. View Article : Google Scholar : PubMed/NCBI | |
Su Q, Shen H, Gu B and Zhu N: Circular RNA CNOT2 knockdown regulates twist family BHLH transcription factor via targeting microRNA 409-3p to prevent breast cancer invasion, migration and epithelial-mesenchymal transition. Bioengineered. 12:9058–9069. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Zou C, Li Y, Yang X, Liu W, Zhang G and Lu N: Knockdown circTRIM28 enhances tamoxifen sensitivity via the miR-409-3p/HMGA2 axis in breast cancer. Reprod Biol Endocrinol. 20:1462022. View Article : Google Scholar : PubMed/NCBI | |
Shukla V, Varghese VK, Kabekkodu SP, Mallya S, Chakrabarty S, Jayaram P, Pandey D, Banerjee S, Sharan K and Satyamoorthy K: Enumeration of deregulated miRNAs in liquid and tissue biopsies of cervical cancer. Gynecol Oncol. 155:135–143. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sommerova L, Anton M, Bouchalova P, Jasickova H, Rak V, Jandakova E, Selingerova I, Bartosik M, Vojtesek B and Hrstka R: The role of miR-409-3p in regulation of HPV16/18-E6 mRNA in human cervical high-grade squamous intraepithelial lesions. Antiviral Res. 163:185–192. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Chen J, Zheng Y and Shen H: Circ_0000745 promotes the progression of cervical cancer by regulating miR-409-3p/ATF1 axis. Cancer Biother Radiopharm. 37:766–778. 2022. | |
Zhou B, Li T, Xie R, Zhou J, Liu J, Luo Y and Zhang X: CircFAT1 facilitates cervical cancer malignant progression by regulating ERK1/2 and p38 MAPK pathway through miR-409-3p/CDK8 axis. Drug Dev Res. 82:1131–1143. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Li C, Ye DM, Yu K, Li Y, Tang H, Xu G, Yi S and Zhang Z: Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis. Aging (Albany NY). 13:4663–4673. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Du X, Wu M, Du H, Shi X and Zhang T: MicroRNA-409-3p inhibits osteosarcoma cell migration and invasion by targeting catenin-δ1. Gene. 584:83–89. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Hou W, Jia J, Zhao Y and Zhao B: MiR-409-3p regulates cell proliferation and tumor growth by targeting E74-like factor 2 in osteosarcoma. FEBS Open Bio. 7:348–357. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Zhang Y, Huang Z, Gu H, Zhou K, Yin X and Xu J: MiR-409-3p inhibits cell proliferation and invasion of osteosarcoma by targeting zinc-finger E-box-binding homeobox-1. Front Pharmacol. 10:1372019. View Article : Google Scholar : PubMed/NCBI | |
Long Z, Gong F, Li Y, Fan Z and Li J: Circ_0000285 regulates proliferation, migration, invasion and apoptosis of osteosarcoma by miR-409-3p/IGFBP3 axis. Cancer Cell Int. 20:4812020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Nie H, Wang M, Su L, Li J, Yu B, Wei M, Ju J, Yu Y, Yan M, et al: MicroRNA-409-3p regulates cell proliferation and apoptosis by targeting PHF10 in gastric cancer. Cancer Lett. 320:189–197. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zheng B, Liang L, Huang S, Zha R, Liu L, Jia D, Tian Q, Wang Q, Wang C, Long Z, et al: MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers. Oncogene. 31:4509–4516. 2012. View Article : Google Scholar | |
Yu L, Xie J, Liu X, Yu Y and Wang S: Plasma exosomal CircNEK9 accelerates the progression of gastric cancer via miR-409-3p/MAP7 axis. Dig Dis Sci. 66:4274–4289. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Li K, Liu G, Feng Y, Shi H and Zhang X: Precision hyperthermia-induced miRNA-409-3p upregulation inhibits migration, invasion, and EMT of gastric cancer cells by targeting KLF17. Biochem Biophys Res Commun. 549:113–119. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang J, Chen X and Gao L: Circ_0001023 promotes proliferation and metastasis of gastric cancer cells through miR-409-3p/PHF10 axis. Onco Targets Ther. 13:4533–4544. 2020. View Article : Google Scholar : | |
Liu M, Xu A, Yuan X, Zhang Q, Fang T, Wang W and Li C: Downregulation of microRNA-409-3p promotes aggressiveness and metastasis in colorectal cancer: An indication for personalized medicine. J Transl Med. 13:1952015. View Article : Google Scholar : PubMed/NCBI | |
Bai R, Weng C, Dong H, Li S, Chen G and Xu Z: MicroRNA-409-3p suppresses colorectal cancer invasion and metastasis partly by targeting GAB1 expression. Int J Cancer. 137:2310–2322. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Xiang J, Li Z, Lu S, Hu J, Gao X, Yu L, Wang L, Wang J, Wu Y, et al: A plasma microRNA panel for early detection of colorectal cancer. Int J Cancer. 136:152–161. 2015. View Article : Google Scholar | |
Tan S, Shi H, Ba M, Lin S, Tang H, Zeng X and Zhang X: miR-409-3p sensitizes colon cancer cells to oxaliplatin by inhibiting Beclin-1-mediated autophagy. Int J Mol Med. 37:1030–1038. 2016. View Article : Google Scholar : PubMed/NCBI | |
López-Rosas I, López-Camarillo C, Salinas-Vera YM, Hernández-de la Cruz ON, Palma-Flores C, Chávez-Munguía B, Resendis-Antonio O, Guillen N, Pérez-Plasencia C, Álvarez-Sánchez ME, et al: Entamoeba histolytica up-regulates MicroRNA-643 to promote apoptosis by targeting XIAP in human epithelial colon cells. Front Cell Infect Microbiol. 8:4372019. View Article : Google Scholar : PubMed/NCBI | |
Han W, Yin H, Ma H, Wang Y, Kong D and Fan Z: Curcumin regulates ERCC1 expression and enhances oxaliplatin sensitivity in resistant colorectal cancer cells through its effects on miR-409-3p. Evid Based Complement Alternat Med. 2020:83945742020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Wang R, Lu E, Song S and Zhu Y: LINC00630 as a miR-409-3p sponge promotes apoptosis and glycolysis of colon carcinoma cells via regulating HK2. Am J Transl Res. 14:863–875. 2022.PubMed/NCBI | |
Zhang J, Raju GS, Chang DW, Lin SH, Chen Z and Wu X: Global and targeted circulating microRNA profiling of colorectal adenoma and colorectal cancer. Cancer. 124:785–796. 2018. View Article : Google Scholar | |
Gharpure KM, Pradeep S, Sans M, Rupaimoole R, Ivan C, Wu SY, Bayraktar E, Nagaraja AS, Mangala LS, Zhang X, et al: FABP4 as a key determinant of metastatic potential of ovarian cancer. Nat Commun. 9:29232018. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Ban R, Liu W, Wang H, Li S, Yue Z, Zhu G, Zhuan Y and Wang C: MiRNA-409-3p enhances cisplatin-sensitivity of ovarian cancer cells by blocking the autophagy mediated by Fip200. Oncol Res. Jan 2–2018.Epub ahead of print. View Article : Google Scholar | |
Zhang S, Zhang X, Fu X, Li W, Xing S and Yang Y: Identification of common differentially-expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells. Oncol Lett. 16:2391–2401. 2018.PubMed/NCBI | |
Li Y, Chen L, Zhang B, Ohno Y and Hu H: miR-409-3p inhibits the proliferation and migration of human ovarian cancer cells by targeting Rab10. Cell Mol Biol (Noisy-le-grand). 66:197–201. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Ma X, Zhang Y, Ni D, Ai Q, Li H and Zhang X: Establishment of a miRNA-mRNA regulatory network in metastatic renal cell carcinoma and screening of potential therapeutic targets. Tumour Biol. Nov 2–2016.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, He Y, Bai H, Dang Y, Gao J and Lv P: Phosphoinositide-dependent kinase 1-associated glycolysis is regulated by miR-409-3p in clear cell renal cell carcinoma. J Cell Biochem. 120:126–134. 2019. View Article : Google Scholar | |
Xu X, Chen H, Lin Y, Hu Z, Mao Y, Wu J, Xu X, Zhu Y, Li S, Zheng X and Xie L: MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells via targeting c-Met. Mol Cells. 36:62–68. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Zhu Y, Liang Z, Li S, Xu X, Wang X, Wu J, Hu Z, Meng S, Liu B, et al: c-Met and CREB1 are involved in miR-433-mediated inhibition of the epithelial-mesenchymal transition in bladder cancer by regulating Akt/GSK-3β/Snail signaling. Cell Death Dis. 7:e20882016. View Article : Google Scholar | |
Lian J, Lin SH, Ye Y, Chang DW, Huang M, Dinney CP and Wu X: Serum microRNAs as predictors of risk for non-muscle invasive bladder cancer. Oncotarget. 9:14895–14908. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Yang F, Liu Y, Fu K and Jing S: MicroRNA-409-3p suppresses cell proliferation and cell cycle progression by targeting cyclin D2 in papillary thyroid carcinoma. Oncol Lett. 16:5237–5242. 2018.PubMed/NCBI | |
Kim K, Yoo D, Lee HS, Lee KJ, Park SB, Kim C, Jo JH, Jung DE and Song SY: Identification of potential biomarkers for diagnosis of pancreatic and biliary tract cancers by sequencing of serum microRNAs. BMC Med Genomics. 12:622019. View Article : Google Scholar : PubMed/NCBI | |
Leivonen SK, Icay K, Jäntti K, Siren I, Liu C, Alkodsi A, Cervera A, Ludvigsen M, Hamilton-Dutoit SJ, d'Amore F, et al: MicroRNAs regulate key cell survival pathways and mediate chemosensitivity during progression of diffuse large B-cell lymphoma. Blood Cancer J. 7:6542017. View Article : Google Scholar : PubMed/NCBI | |
Li M, Cui X and Guan H: The expression and clinical significance of MicroRNA-409-3p in acute myeloid leukemia. Clin Lab. 66:2020. View Article : Google Scholar | |
Xie W, Wang Z, Guo X and Guan H: MiR-409-3p regulates the proliferation and apoptosis of THP-1 through targeting Rab10. Leuk Res. 132:1073502023. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Nayak S, Pathak P, Purkait S, Malgulawar PB, Sharma MC, Suri V, Mukhopadhyay A, Suri A and Sarkar C: Identification of miR-379/miR-656 (C14MC) cluster downregulation and associated epigenetic and transcription regulatory mechanism in oligodendrogliomas. J Neurooncol. 139:23–31. 2018. View Article : Google Scholar : PubMed/NCBI | |
Venza I, Visalli M, Beninati C, Benfatto S, Teti D and Venza M: IL-10Rα expression is post-transcriptionally regulated by miR-15a, miR-185, and miR-211 in melanoma. BMC Med Genomics. 8:812015. View Article : Google Scholar | |
Jiang L, Zhang Y, Li B, Kang M, Yang Z, Lin C, Hu K, Wei Z, Xu M, Mi J, et al: miRNAs derived from circulating small extracellular vesicles as diagnostic biomarkers for nasopharyngeal carcinoma. Cancer Sci. 112:2393–2404. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen H and Dai J: miR-409-3p suppresses the proliferation, invasion and migration of tongue squamous cell carcinoma via targeting RDX. Oncol Lett. 16:543–551. 2018.PubMed/NCBI | |
Josson S, Gururajan M, Hu P, Shao C, Chu GY, Zhau HE, Liu C, Lao K, Lu CL, Lu YT, et al: miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer. Clin Cancer Res. 20:4636–4646. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gururajan M, Josson S, Chu GC, Lu CL, Lu YT, Haga CL, Zhau HE, Liu C, Lichterman J, Duan P, et al: miR-154* and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer. Clin Cancer Res. 20:6559–6569. 2014. View Article : Google Scholar : PubMed/NCBI | |
Josson S, Gururajan M, Sung SY, Hu P, Shao C, Zhau HE, Liu C, Lichterman J, Duan P, Li Q, et al: Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene. 34:2690–2699. 2015. View Article : Google Scholar | |
Yu Q, Li P, Weng M, Wu S, Zhang Y, Chen X, Zhang Q, Shen G, Ding X and Fu S: Nano-vesicles are a potential tool to monitor therapeutic efficacy of carbon ion radiotherapy in prostate cancer. J Biomed Nanotechnol. 14:168–178. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fredsøe J, Rasmussen AKI, Mouritzen P, Bjerre MT, Østergren P, Fode M, Borre M and Sørensen KD: Profiling of circulating microRNAs in prostate cancer reveals diagnostic biomarker potential. Diagnostics (Basel). 10:1882020. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HCN, Xie W, Yang M, Hsieh CL, Drouin S, Lee GS and Kantoff PW: Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate. 73:346–354. 2013. View Article : Google Scholar | |
Zhi F, Shao N, Li B, Xue L, Deng D, Xu Y, Lan Q, Peng Y and Yang Y: A serum 6-miRNA panel as a novel non-invasive biomarker for meningioma. Sci Rep. 6:320672016. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Wang X, Han L, Zhao Z, Jia S and Tuo Y: CircRNA DOCK1 regulates miR-409-3p/MCL1 axis to modulate proliferation and apoptosis of human brain vascular smooth muscle cells. Front Cell Dev Biol. 9:6556282021. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Zhang L, Wei M, Jiang X and Jia D: MicroRNA-409-3p represses glioma cell invasion and proliferation by targeting high-mobility group nucleosome-binding domain 5. Oncol Res. 25:1097–1107. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Chen Z, Zhou Y, Li Y, Li S, Wang H and Feng J: Hsa_circ_0000418 promotes the progression of glioma by regulating microRNA-409-3p/pyruvate dehydrogenase kinase 1 axis. Bioengineered. 13:7541–7552. 2022. View Article : Google Scholar : PubMed/NCBI | |
Weng C, Dong H, Chen G, Zhai Y, Bai R, Hu H, Lu L and Xu Z: miR-409-3p inhibits HT1080 cell proliferation, vascularization and metastasis by targeting angiogenin. Cancer Lett. 323:171–179. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khalil S, Fabbri E, Santangelo A, Bezzerri V, Cantù C, Di Gennaro G, Finotti A, Ghimenton C, Eccher A, Dechecchi M, et al: miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma. Oncotarget. 7:28195–28206. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chang JH, Xu BW, Shen D, Zhao W, Wang Y, Liu JL, Meng GX, Li GZ and Zhang ZL: BRF2 is mediated by microRNA-409-3p and promotes invasion and metastasis of HCC through the Wnt/β-catenin pathway. Cancer Cell Int. 23:462023. View Article : Google Scholar | |
Li L, Ai R, Yuan X, Dong S, Zhao D, Sun X, Miao T, Guan W, Guo P, Yu S and Nan Y: LINC00886 facilitates hepatocellular carcinoma tumorigenesis by sequestering microRNA-409-3p and microRNA-214-5p. J Hepatocell Carcinoma. 10:863–881. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pigati L, Yaddanapudi SCS, Iyengar R, Kim DJ, Hearn SA, Danforth D, Hastings ML and Duelli DM: Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One. 5:e135152010. View Article : Google Scholar : PubMed/NCBI | |
Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-'t Hoen EN, Piper MG, Sivaraman S, Skog J, et al: Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2:2013. View Article : Google Scholar : PubMed/NCBI | |
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gallo A, Tandon M, Alevizos I and Illei GG: The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 7:e306792012. View Article : Google Scholar : PubMed/NCBI | |
Mathivanan S, Ji H and Simpson RJ: Exosomes: Extracellular organelles important in intercellular communication. J Proteomics. 73:1907–1920. 2010. View Article : Google Scholar : PubMed/NCBI | |
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, et al: Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 108:5003–5008. 2011. View Article : Google Scholar : PubMed/NCBI | |
Turchinovich A, Weiz L, Langheinz A and Burwinkel B: Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39:7223–7233. 2011. View Article : Google Scholar : PubMed/NCBI | |
Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, et al: Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 14:518–527. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goetsch L, Caussanel V and Corvaia N: Biological significance and targeting of c-Met tyrosine kinase receptor in cancer. Front Biosci (Landmark Ed). 18:454–473. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cecchi F, Rabe DC and Bottaro DP: Targeting the HGF/Met signalling pathway in cancer. Eur J Cancer. 46:1260–1270. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dienstmann R, Rodon J, Serra V and Tabernero J: Picking the point of inhibition: A comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol Cancer Ther. 13:1021–1031. 2014. View Article : Google Scholar : PubMed/NCBI | |
Friedl P and Wolf K: Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer. 3:362–374. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brabletz T, Kalluri R, Nieto MA and Weinberg RA: EMT in cancer. Nat Rev Cancer. 18:128–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Singh M, Yelle N, Venugopal C and Singh SK: EMT: Mechanisms and therapeutic implications. Pharmacol Ther. 182:80–94. 2018. View Article : Google Scholar | |
Liu T, Zhao X, Zheng X, Zheng Y, Dong X, Zhao N, Liao S and Sun B: The EMT transcription factor, Twist1, as a novel therapeutic target for pulmonary sarcomatoid carcinomas. Int J Oncol. 56:750–760. 2020.PubMed/NCBI | |
Stenmark H: Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 10:513–525. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheng HL, Trink B, Tzai TS, Liu HS, Chan SH, Ho CL, Sidransky D and Chow NH: Overexpression of c-met as a prognostic indicator for transitional cell carcinoma of the urinary bladder: A comparison with p53 nuclear accumulation. J Clin Oncol. 20:1544–1550. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tan Q, Joshua AM, Wang M, Bristow RG, Wouters BG, Allen CJ and Tannock IF: Correction to: Up-regulation of autophagy is a mechanism of resistance to chemotherapy and can be inhibited by pantoprazole to increase drug sensitivity. Cancer Chemother Pharmacol. Jan 19–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Helgason GV, Holyoake TL and Ryan KM: Role of autophagy in cancer prevention, development and therapy. Essays Biochem. 55:133–151. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Sun K, Ma Y, Yang H, Zhang Y, Kong X and Wei L: Autophagy inhibits chemotherapy-induced apoptosis through downregulating Bad and Bim in hepatocellular carcinoma cells. Sci Rep. 4:53822014. View Article : Google Scholar : PubMed/NCBI | |
Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, et al: Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis. 4:e8382013. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara K, Iwado E, Mills GB, Sawaya R, Kondo S and Kondo Y: Akt inhibitor shows anticancer and radiosensitizing effects in malignant glioma cells by inducing autophagy. Int J Oncol. 31:753–760. 2007.PubMed/NCBI | |
Kim EJ, Jeong JH, Bae S, Kang S, Kim CH and Lim YB: mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy. J Cell Biochem. 114:1248–1256. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P and Ogier-Denis E: The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem. 276:35243–35246. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liberti MV and Locasale JW: The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Orang AV, Petersen J, McKinnon RA and Michael MZ: Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab. 23:98–126. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Wang L, Cao L and Wei T: Novel circular RNA circATRNL1 accelerates the osteosarcoma aerobic glycolysis through targeting miR-409-3p/LDHA. Bioengineered. 12:9965–9975. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chang SH and Hla T: Gene regulation by RNA binding proteins and microRNAs in angiogenesis. Trends Mol Med. 17:650–658. 2011. View Article : Google Scholar : PubMed/NCBI | |
Folkman J, Watson K, Ingber D and Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 339:58–61. 1989. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Wang X: Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 13:1652020. View Article : Google Scholar | |
Huang Y, Yang Y, He Y and Li J: The emerging role of Nemo-like kinase (NLK) in the regulation of cancers. Tumour Biol. 36:9147–9152. 2015. View Article : Google Scholar : PubMed/NCBI | |
Masoumi KC, Daams R, Sime W, Siino V, Ke H, Levander F and Massoumi R: NLK-mediated phosphorylation of HDAC1 negatively regulates Wnt signaling. Mol Biol Cell. 28:346–355. 2017. View Article : Google Scholar : | |
Smit L, Baas A, Kuipers J, Korswagen H, van de Wetering M and Clevers H: Wnt activates the Tak1/Nemo-like kinase pathway. J Biol Chem. 279:17232–17240. 2004. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Deng H, Liu J, Han G, Malkoski S, Liu B, Zhao R, Wang XJ and Zhang Q: Transcriptional down-regulation of Brca1 and E-cadherin by CtBP1 in breast cancer. Mol Carcinog. 51:500–507. 2012. View Article : Google Scholar | |
Ma PC, Maulik G, Christensen J and Salgia R: c-Met: Structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 22:309–325. 2003. View Article : Google Scholar : PubMed/NCBI | |
Revathidevi S and Munirajan AK: Akt in cancer: Mediator and more. Semin Cancer Biol. 59:80–91. 2019. View Article : Google Scholar : PubMed/NCBI | |
Johnson GL and Lapadat R: Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 298:1911–1912. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chen Y and Wang X: miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 48(D1): D127–D131. 2020. View Article : Google Scholar : | |
McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM and Bartel DP: The biochemical basis of microRNA targeting efficacy. Science. 366:eaav17412019. View Article : Google Scholar : PubMed/NCBI |