Impact of obesity‑associated myeloid‑derived suppressor cells on cancer risk and progression (Review)
- Authors:
- Carlos Jiménez‑Cortegana
- Cristian Gutiérrez‑García
- Flora Sánchez‑Jiménez
- Teresa Vilariño‑García
- Rocio Flores‑Campos
- Antonio Pérez‑Pérez
- Carmen Garnacho
- Maria L. Sánchez‑León
- Daniel J. García‑Domínguez
- Lourdes Hontecillas‑Prieto
- Natalia Palazón‑Carrión
- Luis De La Cruz‑Merino
- Víctor Sánchez‑Margalet
-
Affiliations: Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain, Department of Normal and Pathological Histology and Cytology, School of Medicine, University of Seville, 41009 Seville, Spain, Oncology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain - Published online on: June 27, 2024 https://doi.org/10.3892/ijo.2024.5667
- Article Number: 79
-
Copyright: © Jiménez‑Cortegana et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lee H, Lee IS and Choue R: Obesity, inflammation and diet. Pediatr Gastroenterol Hepatol Nutr. 16:143–152. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ben-Shmuel S, Rostoker R, Scheinman EJ and LeRoith D: Metabolic Syndrome, type 2 diabetes, and cancer: Epidemiology and potential mechanisms. Handb Exp Pharmacol. 233:355–372. 2016. View Article : Google Scholar | |
Jiang SZ, Lu W, Zong XF, Ruan HY and Liu Y: Obesity and hypertension. Exp Ther Med. 12:2395–2399. 2016. View Article : Google Scholar : PubMed/NCBI | |
Klop B, Elte JW and Cabezas MC: Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients. 5:1218–1240. 2013. View Article : Google Scholar : PubMed/NCBI | |
Broughton DE and Moley KH: Obesity and female infertility: Potential mediators of obesity's impact. Fertil Steril. 107:840–847. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Pino MD, Gilmore LA, Ochoa AC and Brown JC: Obesity-Associated myeloid immunosuppressive cells, key players in cancer risk and response to immunotherapy. Obesity (Silver Spring). 29:944–953. 2021. View Article : Google Scholar : PubMed/NCBI | |
Munn LL: Cancer and inflammation. Wiley Interdiscip Rev Syst Biol Med. 9: View Article : Google Scholar : 2017. | |
Greten FR and Grivennikov SI: Inflammation and Cancer: Triggers, mechanisms, and consequences. Immunity. 51:27–41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jimenez-Cortegana C, Palazon-Carrion N, Martin Garcia-Sancho A, Nogales-Fer nandez E, Carnicero-Gonzalez F, Rios-Herranz E, de la Cruz-Vicente F, Rodríguez-García G, Fernández-Álvarez R, Rueda Dominguez A, et al: Circulating myeloid-derived suppressor cells and regulatory T cells as immunological biomarkers in refractory/relapsed diffuse large B-cell lymphoma: Translational results from the R2-GDP-GOTEL trial. J Immunother Cancer. 9:e0023232021. View Article : Google Scholar : PubMed/NCBI | |
Karin N: The development and homing of myeloid-derived suppressor cells: From a two-stage model to a multistep narrative. Front Immunol. 11:5575862020. View Article : Google Scholar : PubMed/NCBI | |
Law AMK, Valdes-Mora F and Gallego-Ortega D: Myeloid-Derived suppressor cells as a therapeutic target for cancer. Cells. 9:5612020. View Article : Google Scholar : PubMed/NCBI | |
Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P and Van Ginderachter JA: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 111:4233–4244. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, et al: Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 7:121502016. View Article : Google Scholar : PubMed/NCBI | |
Jimenez-Cortegana C, Liro J, Palazon-Carrion N, Salamanca E, Sojo-Dorado J, de la Cruz-Merino L, Pascual Á, Rodríguez-Baño J and Sánchez-Margalet V: Increased blood monocytic myeloid derived suppressor cells but low regulatory T lymphocytes in patients with mild COVID-19. Viral Immunol. 34:639–645. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jimenez-Cortegana C, Sanchez - Martinez P M, Palazon-Carrion N, Nogales-Fernandez E, Henao-Carrasco F, Martin Garcia-Sancho A, Rueda A, Provencio M, de la Cruz-Merino L and Sánchez-Margalet V: Lower survival and increased circulating suppressor cells in patients with relapsed/refractory diffuse large B-Cell lymphoma with deficit of vitamin D Levels Using R-GDP Plus Lenalidomide (R2-GDP): Results from the R2-GDP-GOTEL Trial. Cancers (Basel). 13:46222021. View Article : Google Scholar : PubMed/NCBI | |
Farshidpour M, Ahmed M, Junna S and Merchant JL: Myeloid-derived suppressor cells in gastrointestinal cancers: A systemic review. World J Gastrointest Oncol. 13:1–11. 2021. View Article : Google Scholar : PubMed/NCBI | |
O'Connor MA, Rastad JL and Green WR: The role of myeloid-derived suppressor cells in viral infection. Viral Immunol. 30:82–97. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan L, Liang M, Yang T, Ji J, Jose Kumar Sreena GS, Hou X, Cao M and Feng Z: The immunoregulatory role of myeloid-derived suppressor cells in the pathogenesis of Rheumatoid arthritis. Front Immunol. 11:5683622020. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Guo J, Weng L, Tang W, Jin S and Ma W: Myeloid-derived suppressor cells-new and exciting players in lung cancer. J Hematol Oncol. 13:102020. View Article : Google Scholar : PubMed/NCBI | |
Youn JI, Nagaraj S, Collazo M and Gabrilovich DI: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 181:5791–5802. 2008. View Article : Google Scholar : PubMed/NCBI | |
Talmadge JE and Gabrilovich DI: History of myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arner E, Mejhert N, Kulyte A, Balwierz PJ, Pachkov M, Cormont M, Lorente-Cebrián S, Ehrlund A, Laurencikiene J, Hedén P, et al: Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes. 61:1986–1993. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oo MW, Kawai H, Takabatake K, Tomida S, Eguchi T, Ono K, Shan Q, Ohara T, Yoshida S, Omori H, et al: Resident stroma-secreted chemokine CCL2 governs myeloid-derived suppressor cells in the tumor microenvironment. JCI Insight. 7:e1489602022. View Article : Google Scholar : | |
Martinez-Chacon G, Yatkin E, Polari L, Deniz Dinc D, Peuhu E, Hartiala P, Saarinen N and Mäkelä S: CC chemokine ligand 2 (CCL2) stimulates aromatase gene expression in mammary adipose tissue. FASEB J. 35:e215362021. View Article : Google Scholar : PubMed/NCBI | |
Friesenhengst A, Pribitzer-Winner T, Miedl H, Prostling K and Schreiber M: Elevated aromatase (CYP19A1) expression is associated with a poor survival of patients with estrogen receptor positive breast cancer. Horm Cancer. 9:128–138. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boi SK, Orlandella RM, Gibson JT, Turbitt WJ, Wald G, Thomas L, Buchta Rosean C, Norris KE, Bing M, Bertrand L, et al: Obesity diminishes response to PD-1-based immunotherapies in renal cancer. J Immunother Cancer. 8:e0007252020. View Article : Google Scholar : | |
Liu Y, Tiruthani K, Wang M, Zhou X, Qiu N, Xiong Y, Pecot CV, Liu R and Huang L: Tumor-targeted gene therapy with lipid nanoparticles inhibits tumor-associated adipocytes and remodels the immunosuppressive tumor microenvironment in triple-negative breast cancer. Nanoscale Horiz. 6:319–329. 2021. View Article : Google Scholar : PubMed/NCBI | |
James BR, Anderson KG, Brincks EL, Kucaba TA, Norian LA, Masopust D and Griffith TS: CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma. Cancer Immunol Immunother. 63:1213–1227. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hale M, Itani F, Buchta CM, Wald G, Bing M and Norian LA: Obesity triggers enhanced MDSC accumulation in murine renal tumors via elevated local production of CCL2. PLoS One. 10:e01187842015. View Article : Google Scholar : PubMed/NCBI | |
Jiao P, Chen Q, Shah S, Du J, Tao B, Tzameli I, Yan W and Xu H: Obesity-related upregulation of monocyte chemotactic factors in adipocytes: Involvement of nuclear factor-kappaB and c-Jun NH2-terminal kinase pathways. Diabetes. 58:104–115. 2009. View Article : Google Scholar : | |
Li B, Zhang S, Huang N, Chen H, Wang P, Yang J and Li Z: CCL9/CCR1 induces myeloidderived suppressor cell recruitment to the spleen in a murine H22 orthotopic hepatoma model. Oncol Rep. 41:608–618. 2019. | |
Peng J, Hu Q, Chen X, Wang C, Zhang J, Ren X, Wang Y, Tao X, Li H, Song M, et al: Diet-induced obesity accelerates oral carcinogenesis by recruitment and functional enhancement of myeloid-derived suppressor cells. Cell Death Dis. 12:9462021. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Yu B, Kang J, Li A and Sun J: Obesity promotes tumor immune evasion in ovarian cancer through increased production of myeloid-derived suppressor cells via IL-6. Cancer Manag Res. 13:7355–7363. 2021. View Article : Google Scholar : PubMed/NCBI | |
Turbitt WJ, Collins SD, Meng H and Rogers CJ: Increased adiposity enhances the accumulation of MDSCs in the tumor microenvironment and adipose tissue of pancreatic tumor-bearing mice and in immune organs of tumor-free hosts. Nutrients. 11:30122019. View Article : Google Scholar : PubMed/NCBI | |
Gibson JT, Orlandella RM, Turbitt WJ, Behring M, Manne U, Sorge RE and Norian LA: Obesity-Associated myeloid-derived suppressor cells promote apoptosis of tumor-infiltrating CD8 T cells and immunotherapy resistance in breast cancer. Front Immunol. 11:5907942020. View Article : Google Scholar : PubMed/NCBI | |
Alfaro C, Teijeira A, Onate C, Perez G, Sanmamed MF, Andueza MP, Alignani D, Labiano S, Azpilikueta A, Rodriguez-Paulete A, et al: Tumor-Produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res. 22:3924–3936. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Tseng C, Zhang Y, Sirin O, Corn PG, Li-Ning-Tapia EM, Troncoso P, Davis J, Pettaway C, Ward J, et al: CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nat Commun. 7:116742016. View Article : Google Scholar : PubMed/NCBI | |
De Pergola G and Silvestris F: Obesity as a major risk factor for cancer. J Obes. 2013:2915462013. View Article : Google Scholar : PubMed/NCBI | |
Ross KH, Gogineni K, Subhedar PD, Lin JY and McCullough LE: Obesity and cancer treatment efficacy: Existing challenges and opportunities. Cancer. 125:1588–1592. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bao Y, Mo J, Ruan L and Li G: Increased monocytic CD14(+) HLADRlow/-myeloid-derived suppressor cells in obesity. Mol Med Rep. 11:2322–2328. 2015. View Article : Google Scholar | |
Rudolph BM, Loquai C, Gerwe A, Bacher N, Steinbrink K, Grabbe S and Tuettenberg A: Increased frequencies of CD11b(+) CD33(+) CD14(+) HLA-DR(low) myeloid-derived suppressor cells are an early event in melanoma patients. Exp Dermatol. 23:202–204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL and Bowdish DM: Blood CD33(+)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 93:633–637. 2013. View Article : Google Scholar : PubMed/NCBI | |
Margaroli C, Cardenas MA, Jansen CS, Moon Reyes A, Hosseinzadeh F, Hong G, Zhang Y, Kissick H, Tirouvanziam R and Master VA: The immunosuppressive phenotype of tumor-infiltrating neutrophils is associated with obesity in kidney cancer patients. Oncoimmunology. 9:17477312020. View Article : Google Scholar : PubMed/NCBI | |
Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V and Chouaib S: PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 211:781–790. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hafida S, Mirshahi T and Nikolajczyk BS: The impact of bariatric surgery on inflammation: Quenching the fire of obesity? Curr Opin Endocrinol Diabetes Obes. 23:373–378. 2016. View Article : Google Scholar : PubMed/NCBI | |
Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D and Golab J: Myeloid cell-derived arginase in cancer immune response. Front Immunol. 11:9382020. View Article : Google Scholar : PubMed/NCBI | |
Deryugina E, Carre A, Ardi V, Muramatsu T, Schmidt J, Pham C and Quigley JP: Neutrophil elastase facilitates tumor cell intravasation and early metastatic events. iScience. 23:1017992020. View Article : Google Scholar : PubMed/NCBI | |
Lerman I, Garcia-Hernandez ML, Rangel-Moreno J, Chiriboga L, Pan C, Nastiuk KL, Krolewski JJ, Sen A and Hammes SR: Infiltrating myeloid cells exert protumorigenic actions via neutrophil elastase. Mol Cancer Res. 15:1138–1152. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saitta C, Pollicino T and Raimondo G: Obesity and liver cancer. Ann Hepatol. 18:810–815. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wang L, Cong L, Wong CC, Zhang X, Chen H, Zeng T, Li B, Jia X, Huo J, et al: Spatial proteomics of immune microenvironment in nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatology. 79:560–574. 2024. View Article : Google Scholar | |
Ponziani FR, Bhoori S, Castelli C, Putignani L, Rivoltini L, Del Chierico F, Sanguinetti M, Morelli D, Paroni Sterbini F, Petito V, et al: Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology. 69:107–120. 2019. View Article : Google Scholar | |
Wang L, Zhu L, Liang C, Huang X, Liu Z, Huo J, Zhang Y, Zhang Y, Chen L, Xu H, et al: Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis. J Hepatol. 79:1185–1200. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Yang W, Tian Y, Zeng X, Zhou J, Mok MTS, Tang W, Feng Y, Xu L, Chan AWH, et al: An inflammatory-CCRK circuitry drives mTORC1-dependent metabolic and immunosuppressive reprogramming in obesity-associated hepatocellular carcinoma. Nat Commun. 9:52142018. View Article : Google Scholar : PubMed/NCBI | |
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, et al: Chronic inflammation in the etiology of disease across the life span. Nat Med. 25:1822–1832. 2019. View Article : Google Scholar : PubMed/NCBI | |
Muller WA: Getting leukocytes to the site of inflammation. Vet Pathol. 50:7–22. 2013. View Article : Google Scholar : PubMed/NCBI | |
Klevebro S, Bjorkander S, Ekstrom S, Merid SK, Gruzieva O, Malarstig A, Johansson Å, Kull I, Bergström A and Melén E: Inflammation-related plasma protein levels and association with adiposity measurements in young adults. Sci Rep. 11:113912021. View Article : Google Scholar : PubMed/NCBI | |
Ellulu MS, Patimah I, Khaza'ai H, Rahmat A and Abed Y: Obesity and inflammation: The linking mechanism and the complications. Arch Med Sci. 13:851–863. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sakai Y and Kobayashi M: Lymphocyte 'homing' and chronic inflammation. Pathol Int. 65:344–354. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ingersoll MA, Platt AM, Potteaux S and Randolph GJ: Monocyte trafficking in acute and chronic inflammation. Trends Immunol. 32:470–477. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wensveen FM, Valentic S, Sestan M, Wensveen TT and Polic B: Interactions between adipose tissue and the immune system in health and malnutrition. Semin Immunol. 27:322–333. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kumar DP, Koka S, Li C and Rajagopal S: Inflammatory mediators in obesity. Mediators Inflamm. 2019:94818192019. View Article : Google Scholar : PubMed/NCBI | |
Howe LR, Subbaramaiah K, Hudis CA and Dannenberg AJ: Molecular pathways: Adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 19:6074–6083. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kawanishi S, Ohnishi S, Ma N, Hiraku Y and Murata M: Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int J Mol Sci. 18:18082017. View Article : Google Scholar : PubMed/NCBI | |
Murata M: Inflammation and cancer. Environ Health Prev Med. 23:502018. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Mao R and Yang J: NF-ĸB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 4:176–185. 2013. View Article : Google Scholar : PubMed/NCBI | |
Del Prete A, Allavena P, Santoro G, Fumarulo R, Corsi MM and Mantovani A: Molecular pathways in cancer-related inflammation. Biochem Med (Zagreb). 21:264–275. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Li C, Liu T, Dai X and Bazhin AV: Myeloid-Derived suppressor cells in tumors: From mechanisms to antigen specificity and microenvironmental regulation. Front Immunol. 11:13712020. View Article : Google Scholar : PubMed/NCBI | |
Ma P, Beatty PL, McKolanis J, Brand R, Schoen RE and Finn OJ: Circulating myeloid derived suppressor cells (MDSC) that accumulate in premalignancy share phenotypic and functional characteristics with MDSC in cancer. Front Immunol. 10:14012019. View Article : Google Scholar : PubMed/NCBI | |
Veglia F, Sanseviero E and Gabrilovich DI: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 21:485–498. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xia S, Sha H, Yang L, Ji Y, Ostrand-Rosenberg S and Qi L: Gr-1+ CD11b+ myeloid-derived suppressor cells suppress inflammation and promote insulin sensitivity in obesity. J Biol Chem. 286:23591–23599. 2011. View Article : Google Scholar : PubMed/NCBI | |
Srikrishna G: S100A8 and S100A9: New insights into their roles in malignancy. J Innate Immun. 4:31–40. 2012. View Article : Google Scholar : | |
Siddiqui S and Glauben R: Fatty acid metabolism in myeloid-derived suppressor cells and tumor-associated macrophages: Key factor in cancer immune evasion. Cancers (Basel). 14:2502022. View Article : Google Scholar : PubMed/NCBI | |
Adeshakin AO, Liu W, Adeshakin FO, Afolabi LO, Zhang M, Zhang G, Wang L, Li Z, Lin L, Cao Q, et al: Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell Immunol. 362:1042862021. View Article : Google Scholar : PubMed/NCBI | |
Xin G, Chen Y, Topchyan P, Kasmani MY, Burns R, Volberding PJ, Wu X, Cohn A, Chen Y, Lin CW, et al: Targeting PIM1-Mediated metabolism in myeloid suppressor cells to treat cancer. Cancer Immunol Res. 9:454–469. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Pino MD, Dean MJ and Ochoa AC: Myeloid-derived suppressor cells (MDSC): When good intentions go awry. Cell Immunol. 362:1043022021. View Article : Google Scholar : PubMed/NCBI | |
Zhen Y, Shu W, Hou X and Wang Y: Innate immune system orchestrates metabolic homeostasis and dysfunction in visceral adipose tissue during obesity. Front Immunol. 12:7028352021. View Article : Google Scholar : PubMed/NCBI | |
Klein S, Gastaldelli A, Yki-Jarvinen H and Scherer PE: Why does obesity cause diabetes? Cell Metab. 34:11–20. 2022. View Article : Google Scholar : PubMed/NCBI | |
Clements VK, Long T, Long R, Figley C, Smith DMC and Ostrand-Rosenberg S: Frontline Science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. J Leukoc Biol. 103:395–407. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ingalls AM, Dickie MM and Snell GD: Obese, a new mutation in the house mouse. J Hered. 41:317–318. 1950. View Article : Google Scholar : PubMed/NCBI | |
Hummel KP, Dickie MM and Coleman DL: Diabetes, a new mutation in the mouse. Science. 153:1127–1278. 1966. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L and Friedman JM: Positional cloning of the mouse obese gene and its human homologue. Nature. 372:425–432. 1994. View Article : Google Scholar : PubMed/NCBI | |
Munzberg H and Heymsfield SB: New insights into the regulation of leptin gene expression. Cell Metab. 29:1013–1014. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gorska E, Popko K, Stelmaszczyk-Emmel A, Ciepiela O, Kucharska A and Wasik M: Leptin receptors. Eur J Med Res. 15(Suppl 2): S50–S54. 2010. View Article : Google Scholar | |
Park HK and Ahima RS: Leptin signaling. F1000Prime Rep. 6:732014. View Article : Google Scholar : PubMed/NCBI | |
Perez-Perez A, Sanchez-Jimenez F, Vilarino-Garcia T and Sanchez-Margalet V: Role of leptin in inflammation and vice versa. Int J Mol Sci. 21:58872020. View Article : Google Scholar : PubMed/NCBI | |
Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T and Isenovic ER: Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne). 12:5858872021. View Article : Google Scholar : PubMed/NCBI | |
Vilarino-Garcia T, Perez-Perez A, Santamaria-Lopez E, Prados N, Fernandez-Sanchez M and Sanchez-Margalet V: Sam68 mediates leptin signaling and action in human granulosa cells: Possible role in leptin resistance in PCOS. Endocr Connect. 9:479–488. 2020. View Article : Google Scholar : PubMed/NCBI | |
Perez-Perez A, Toro A, Vilarino-Garcia T, Maymo J, Guadix P, Duenas JL, Fernández-Sánchez M, Varone C and Sánchez-Margalet V: Leptin action in normal and pathological pregnancies. J Cell Mol Med. 22:716–727. 2018. View Article : Google Scholar : | |
Fernandez-Riejos P, Najib S, Santos-Alvarez J, Martin-Romero C, Perez-Perez A, Gonzalez-Yanes C and Sánchez-Margalet V: Role of leptin in the activation of immune cells. Mediators Inflamm. 2010:5683432010. View Article : Google Scholar : PubMed/NCBI | |
Perez-Perez A, Vilarino-Garcia T, Fernandez-Riejos P, Martin-Gonzalez J, Segura-Egea JJ and Sanchez-Margalet V: Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 35:71–84. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dutta D, Ghosh S, Pandit K, Mukhopadhyay P and Chowdhury S: Leptin and cancer: Pathogenesis and modulation. Indian J Endocrinol Metab. 16(Suppl 3): S596–S600. 2012. View Article : Google Scholar | |
Ando S and Catalano S: The multifactorial role of leptin in driving the breast cancer microenvironment. Nat Rev Endocrinol. 8:263–275. 2011. View Article : Google Scholar : PubMed/NCBI | |
Feldman DE, Chen C, Punj V, Tsukamoto H and Machida K: Pluripotency factor-mediated expression of the leptin receptor (OB-R) links obesity to oncogenesis through tumor-initiating stem cells. Proc Natl Acad Sci USA. 109:829–834. 2012. View Article : Google Scholar : | |
Ghasemi A, Saeidi J, Azimi-Nejad M and Hashemy SI: Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol (Dordr). 42:243–260. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ray A and Cleary MP: The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev. 38:80–97. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jimenez-Cortegana C, Lopez-Saavedra A, Sanchez-Jimenez F, Perez-Perez A, Castineiras J, Virizuela-Echaburu JA, de la Cruz-Merino L and Sánchez-Margalet V: Leptin, both bad and good actor in cancer. Biomolecules. 11:9132021. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Jimenez F, Perez-Perez A, de la Cruz-Merino L and Sanchez-Margalet V: Obesity and breast cancer: Role of leptin. Front Oncol. 9:5962019. View Article : Google Scholar : PubMed/NCBI | |
Greer KB, Falk GW, Bednarchik B, Li L and Chak A: Associations of serum adiponectin and leptin with barrett's esophagus. Clin Gastroenterol Hepatol. 13:2265–2272. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li C, Quan J, Wei R, Zhao Z, Guan X, Liu Z, Zou S, Wang X and Jiang Z: Leptin overexpression as a poor prognostic factor for colorectal cancer. Biomed Res Int. 2020:75325142020.PubMed/NCBI | |
Koprivčić I, Marjanovic K, Matic A, Tolusic Levak M, Lovric I, Pauzar B, Erić I and Wertheimer V: Serum leptin level in breast cancer. Acta Clin Croat. 61:79–85. 2022. | |
Wu MH, Chou YC, Chou WY, Hsu GC, Chu CH, Yu CP, Yu JC and Sun CA: Circulating levels of leptin, adiposity and breast cancer risk. Br J Cancer. 100:578–582. 2009. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Grifson JJ, Mavuduru RS, Agarwal MM, Mandal AK and Jha V: Serum leptin: A marker of prostate cancer irrespective of obesity. Cancer Biomark. 7:11–15. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Ma Y, Zhou Q, He J, Peng B, Liu S, Yan Z, Yang X and Fan H: Serum and tissue leptin in lung cancer: A meta-analysis. Oncotarget. 8:19699–19711. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chludzinska-Kasperuk S, Lewko J, Sierzantowicz R, Krajewska-Kulak E and Reszec-Gielazyn J: The effect of serum leptin concentration and leptin receptor expression on colorectal cancer. Int J Environ Res Public Health. 20:49512023. View Article : Google Scholar : PubMed/NCBI | |
Inacio Pinto N, Carnier J, Oyama LM, Otoch JP, Alcantara PS, Tokeshi F and Nascimento CM: Cancer as a proinflammatory environment: Metastasis and cachexia. Mediators Inflamm. 2015:7910602015. View Article : Google Scholar : PubMed/NCBI | |
Ostrand-Rosenberg S: Myeloid derived-suppressor cells: Their role in cancer and obesity. Curr Opin Immunol. 51:68–75. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Rong L, Zhao X, Li X, Liu X, Deng J, Wu H, Xu X, Erben U, Wu P, et al: TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Invest. 122:4094–4104. 2012. View Article : Google Scholar : PubMed/NCBI | |
Weber R, Groth C, Lasser S, Arkhypov I, Petrova V, Altevogt P, Utikal J and Umansky V: IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cell Immunol. 359:1042542021. View Article : Google Scholar | |
Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo P, Apte RN and Vosshenrich CA: IL-1β regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol. 40:3347–3357. 2010. View Article : Google Scholar : PubMed/NCBI | |
Avgerinos KI, Spyrou N, Mantzoros CS and Dalamaga M: Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism. 92:121–135. 2019. View Article : Google Scholar | |
Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F and Straif K; International Agency for Research on Cancer Handbook Working Group: Body Fatness and Cancer-Viewpoint of the IARC Working Group. N Engl J Med. 375:794–798. 2016. View Article : Google Scholar : PubMed/NCBI | |
Griggs JJ, Mangu PB, Anderson H, Balaban EP, Dignam JJ, Hryniuk WM, Morrison VA, Pini TM, Runowicz CD, Rosner GL, et al: Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 30:1553–1561. 2012. View Article : Google Scholar : PubMed/NCBI | |
Griggs JJ, Bohlke K, Balaban EP, Dignam JJ, Hall ET, Harvey RD, Hecht DP, Klute KA, Morrison VA, Pini TM, et al: Appropriate systemic therapy dosing for obese adult patients with cancer: ASCO Guideline Update. J Clin Oncol. 39:2037–2048. 2021. View Article : Google Scholar : PubMed/NCBI | |
De Cicco P, Ercolano G and Ianaro A: The new Era of cancer immunotherapy: Targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 11:16802020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Jia A, Bi Y, Wang Y, Yang Q, Cao Y, Li Y and Liu G: Targeting myeloid-derived suppressor cells in cancer immunotherapy. Cancers (Basel). 12:26262020. View Article : Google Scholar : PubMed/NCBI | |
Horowitz NS and Wright AA: Impact of obesity on chemotherapy management and outcomes in women with gynecologic malignancies. Gynecol Oncol. 138:201–206. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhong J, Deng X, Guo X, Lu Y, Lin J, Huang X and Wang C: Targeting myeloid-derived suppressor cells to enhance the antitumor efficacy of immune checkpoint blockade therapy. Front Immunol. 12:7541962021. View Article : Google Scholar | |
Pingili AK, Chaib M, Sipe LM, Miller EJ, Teng B, Sharma R, Asemota S, Al Abdallah Q, Mims TS, Marion TN, et al: Immune checkpoint blockade reprograms systemic immune landscape and tumor microenvironment in obesity-associated breast cancer. Cell Rep. 35:1092852021. View Article : Google Scholar : PubMed/NCBI | |
Greene S, Robbins Y, Mydlarz WK, Huynh AP, Schmitt NC, Friedman J, Horn LA, Palena C, Schlom J, Maeda DY, et al: Inhibition of MDSC Trafficking with SX-682, a CXCR1/2 Inhibitor, Enhances NK-cell immunotherapy in head and neck cancer models. Clin Cancer Res. 26:1420–1431. 2020. View Article : Google Scholar | |
Zoglmeier C, Bauer H, Noerenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S and Bourquin C: CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res. 17:1765–1775. 2011. View Article : Google Scholar : PubMed/NCBI | |
VanOosten RL and Griffith TS: Activation of tumor-specific CD8+ T Cells after intratumoral Ad5-TRAIL/CpG oligodeoxynucleotide combination therapy. Cancer Res. 67:11980–11990. 2007. View Article : Google Scholar : PubMed/NCBI | |
Griffith TS and Broghammer EL: Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther. 4:257–266. 2001. View Article : Google Scholar : PubMed/NCBI | |
Condamine T, Kumar V, Ramachandran IR, Youn JI, Celis E, Finnberg N, El-Deiry WS, Winograd R, Vonderheide RH, English NR, et al: ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest. 124:2626–2639. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dominguez GA, Condamine T, Mony S, Hashimoto A, Wang F, Liu Q, Forero A, Bendell J, Witt R, Hockstein N, et al: Selective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an Agonistic TRAIL-R2 Antibody. Clin Cancer Res. 23:2942–2950. 2017. View Article : Google Scholar : | |
Zou S, Tong Q, Liu B, Huang W, Tian Y and Fu X: Targeting STAT3 in Cancer Immunotherapy. Mol Cancer. 19:1452020. View Article : Google Scholar : PubMed/NCBI | |
Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA and Gabrilovich DI: Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 67:11021–11028. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen PT, Hsieh CC, Wu CT, Yen TC, Lin PY, Chen WC and Chen MF: 1α,25-Dihydroxyvitamin D3 inhibits esophageal squamous cell carcinoma progression by Reducing IL6 Signaling. Mol Cancer Ther. 14:1365–1375. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chang CC, Wu MJ, Yang JY, Camarillo IG and Chang CJ: Leptin-STAT3-G9a signaling promotes obesity-mediated breast cancer progression. Cancer Res. 75:2375–2386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park JW, Han CR, Zhao L, Willingham MC and Cheng SY: Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model. Endocr Relat Cancer. 23:53–63. 2016. View Article : Google Scholar | |
Berry DC and Noy N: All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol. 29:3286–3296. 2009. View Article : Google Scholar : PubMed/NCBI | |
Karampela I, Sakelliou A, Vallianou N, Christodoulatos GS, Magkos F and Dalamaga M: Vitamin D and Obesity: Current evidence and controversies. Curr Obes Rep. 10:162–180. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lennon H, Sperrin M, Badrick E and Renehan AG: The obesity paradox in cancer: A review. Curr Oncol Rep. 18:562016. View Article : Google Scholar : PubMed/NCBI | |
Lee DH and Giovannucci EL: The obesity paradox in cancer: Epidemiologic insights and perspectives. Curr Nutr Rep. 8:175–181. 2019. View Article : Google Scholar : PubMed/NCBI | |
Weiss L, Melchardt T, Habringer S, Boekstegers A, Hufnagl C, Neureiter D, Hopfinger G, Greil R and Egle A: Increased body mass index is associated with improved overall survival in diffuse large B-cell lymphoma. Ann Oncol. 25:171–176. 2014. View Article : Google Scholar | |
Stevenson JKR, Qiao Y, Chan KKW, Beca J, Isaranuwatchai W, Guo H, Schwartz D, Arias J, Gavura S, Dai WF, et al: Improved survival in overweight and obese patients with aggressive B-cell lymphoma treated with rituximab-containing chemotherapy for curative intent. Leuk Lymphoma. 60:1399–1408. 2019. View Article : Google Scholar | |
Brunner AM, Sadrzadeh H, Feng Y, Drapkin BJ, Ballen KK, Attar EC, Amrein PC, McAfee SL, Chen YB, Neuberg DS and Fathi AT: Association between baseline body mass index and overall survival among patients over age 60 with acute myeloid leukemia. Am J Hematol. 88:642–646. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tsang NM, Pai PC, Chuang CC, Chuang WC, Tseng CK, Chang KP, Yen TC, Lin JD and Chang JT: Overweight and obesity predict better overall survival rates in cancer patients with distant metastases. Cancer Med. 5:665–675. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schlesinger S, Siegert S, Koch M, Walter J, Heits N, Hinz S, Jacobs G, Hampe J, Schafmayer C and Nöthlings U: Postdiagnosis body mass index and risk of mortality in colorectal cancer survivors: A prospective study and meta-analysis. Cancer Causes Control. 25:1407–1418. 2014. View Article : Google Scholar : PubMed/NCBI | |
Amptoulach S, Gross G and Kalaitzakis E: Differential impact of obesity and diabetes mellitus on survival after liver resection for colorectal cancer metastases. J Surg Res. 199:378–385. 2015. View Article : Google Scholar : PubMed/NCBI | |
Parker AS, Lohse CM, Cheville JC, Thiel DD, Leibovich BC and Blute ML: Greater body mass index is associated with better pathologic features and improved outcome among patients treated surgically for clear cell renal cell carcinoma. Urology. 68:741–746. 2006. View Article : Google Scholar : PubMed/NCBI | |
Waalkes S, Merseburger AS, Kramer MW, Herrmann TR, Wegener G, Rustemeier J, Hofmann R, Schrader M, Kuczyk MA and Schrader AJ: Obesity is associated with improved survival in patients with organ-confined clear-cell kidney cancer. Cancer Causes Control. 21:1905–1910. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hakimi AA, Furberg H, Zabor EC, Jacobsen A, Schultz N, Ciriello G, Mikklineni N, Fiegoli B, Kim PH, Voss MH, et al: An epidemiologic and genomic investigation into the obesity paradox in renal cell carcinoma. J Natl Cancer Inst. 105:1862–1870. 2013. View Article : Google Scholar : PubMed/NCBI | |
Albiges L, Hakimi AA, Xie W, McKay RR, Simantov R, Lin X, Lee JL, Rini BI, Srinivas S, Bjarnason GA, et al: Body mass index and metastatic renal cell carcinoma: Clinical and biological correlations. J Clin Oncol. 34:3655–3663. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lam VK, Bentzen SM, Mohindra P, Nichols EM, Bhooshan N, Vyfhuis M, Scilla KA, Feigenberg SJ, Edelman MJ and Feliciano JL: Obesity is associated with long-term improved survival in definitively treated locally advanced non-small cell lung cancer (NSCLC). Lung Cancer. 104:52–57. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shepshelovich D, Xu W, Lu L, Fares A, Yang P, Christiani D, Zhang J, Shiraishi K, Ryan BM, Chen C, et al: Body Mass Index (BMI), BMI change, and overall survival in patients with SCLC and NSCLC: A pooled analysis of the International lung cancer consortium. J Thorac Oncol. 14:1594–1607. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ardesch FH, Ruiter R, Mulder M, Lahousse L, Stricker BHC and Kiefte-de Jong JC: The obesity paradox in lung cancer: Associations with body size versus body shape. Front Oncol. 10:5911102020. View Article : Google Scholar : PubMed/NCBI | |
Hayes AJ and Larkin J: BMI and outcomes in melanoma: More evidence for the obesity paradox. Lancet Oncol. 19:269–270. 2018. View Article : Google Scholar : PubMed/NCBI | |
McQuade JL, Daniel CR, Hess KR, Mak C, Wang DY, Rai RR, Park JJ, Haydu LE, Spencer C, Wongchenko M, et al: Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: A retrospective, multicohort analysis. Lancet Oncol. 19:310–322. 2018. View Article : Google Scholar : PubMed/NCBI | |
Smith LK, Arabi S, Lelliott EJ, McArthur GA and Sheppard KE: Obesity and the impact on cutaneous melanoma: Friend or Foe? Cancers (Basel). 12:15832020. View Article : Google Scholar : PubMed/NCBI | |
Somasundar P, Yu AK, Vona-Davis L and McFadden DW: Differential effects of leptin on cancer in vitro. J Surg Res. 113:50–55. 2013. View Article : Google Scholar | |
Thompson KJ, Lau KN, Johnson S, Martinie JB, Iannitti DA, McKillop IH and Sindram D: Leptin inhibits hepatocellular carcinoma proliferation via p38-MAPK-dependent signalling. HPB (Oxford). 13:225–233. 2011. View Article : Google Scholar : PubMed/NCBI | |
Paik SS, Jang SM, Jang KS, Lee KH, Choi D and Jang SJ: Leptin expression correlates with favorable clinicopathologic phenotype and better prognosis in colorectal adenocarcinoma. Ann Surg Oncol. 16:297–303. 2009. View Article : Google Scholar | |
Murphy WJ and Longo DL: The surprisingly positive association between obesity and cancer immunotherapy efficacy. JAMA. 321:1247–1248. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cespedes Feliciano EM, Kroenke CH and Caan BJ: The obesity paradox in cancer: How important is muscle? Annu Rev Nutr. 38:357–379. 2018. View Article : Google Scholar : PubMed/NCBI | |
Donini LM, Pinto A, Giusti AM, Lenzi A and Poggiogalle E: Obesity or BMI Paradox? Beneath the Tip of the Iceberg. Front Nutr. 7:532020. View Article : Google Scholar : PubMed/NCBI |