1
|
Juliusson G, Lazarevic V, Hörstedt AS,
Hagberg O and Höglund M; Swedish Acute Leukemia Registry Group:
Acute myeloid leukemia in the real world: Why population-based
registries are needed. Blood. 119:3890–3899. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
El Hussein S, Wang SA, Pemmaraju N, Khoury
JD and Loghavi S: Chronic Myelomonocytic leukemia: Hematopathology
perspective. J Immunother Precis Oncol. 4:142–149. 2021. View Article : Google Scholar
|
3
|
Lonetti A, Pession A and Masetti R:
Targeted therapies for pediatric AML: Gaps and perspective. Front
Pediatr. 7:4632019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Anguille S, Van Tendeloo VF and Berneman
ZN: Leukemia-associated antigens and their relevance to the
immunotherapy of acute myeloid leukemia. Leukemia. 26:2186–2196.
2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tsykunova G, Reikvam H, Hovland R and
Bruserud Ø: The surface molecule signature of primary human acute
myeloid leukemia (AML) cells is highly associated with NPM1
mutation status. Leukemia. 26:557–559. 2012. View Article : Google Scholar
|
6
|
Hope KJ, Jin L and Dick JE: Acute myeloid
leukemia originates from a hierarchy of leukemic stem cell classes
that differ in self-renewal capacity. Nat Immunol. 5:738–743. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Song X, Peng Y, Wang X, Chen Y, Jin L,
Yang T, Qian M, Ni W, Tong X and Lan J: Incidence, survival, and
risk factors for adults with acute myeloid leukemia not otherwise
specified and acute myeloid leukemia with recurrent genetic
abnormalities: Analysis of the surveillance, epidemiology, and end
results (SEER) database, 2001-2013. Acta Haematol. 139:115–127.
2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li S, Zhu Y, Liang Z, Wang X, Meng S, Xu
X, Xu X, Wu J, Ji A, Hu Z, et al: Correction: Up-regulation of p16
by miR-877-3p inhibits proliferation of bladder cancer. Oncotarget.
10:6842019. View Article : Google Scholar :
|
9
|
Guerra VA, Dinardo C and Konopleva M:
Venetoclax-based therapies for acute myeloid leukemia. Best Pract
Res Clin Haematol. 32:145–153. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pan B, Qin J, Liu X, He B, Wang X, Pan Y,
Sun H, Xu T, Xu M, Chen X, et al: Identification of serum exosomal
hsa-circ-0004771 as a novel diagnostic biomarker of colorectal
cancer. Front Genet. 10:10962019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jamal M, Song T, Chen B, Faisal M, Hong Z,
Xie T, Wu Y, Pan S, Yin Q, Shao L and Zhang Q: Recent progress on
circular RNA research in acute myeloid leukemia. Front Oncol.
9:11082019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yin Y, Long J, He Q, Li Y, Liao Y, He P
and Zhu W: Emerging roles of circRNA in formation and progression
of cancer. J Cancer. 10:5015–5021. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang Y, Yujiao W, Fang W, Linhui Y, Ziqi
G, Zhichen W, Zirui W and Shengwang W: The roles of miRNA, lncRNA
and circRNA in the development of osteoporosis. Biol Res.
53:402020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shafabakhsh R, Mirhosseini N, Chaichian S,
Moazzami B, Mahdizadeh Z and Asemi Z: Could circRNA be a new
biomarker for pre-eclampsia? Mol Reprod Dev. 86:1773–1780. 2019.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen J, Li Y, Zheng Q, Bao C, He J, Chen
B, Lyu D, Zheng B, Xu Y, Long Z, et al: Circular RNA profile
identifies circPVT1 as a proliferative factor and prognostic marker
in gastric cancer. Cancer Lett. 388:208–219. 2017. View Article : Google Scholar
|
16
|
Zhang J, Liu H, Hou L, Wang G, Zhang R,
Huang Y, Chen X and Zhu J: Circular RNA_LARP4 inhibits cell
proliferation and invasion of gastric cancer by sponging miR-424-5p
and regulating LATS1 expression. Mol Cancer. 16:1512017. View Article : Google Scholar :
|
17
|
Li P, Chen H, Chen S, Mo X, Li T, Xiao B,
Yu R and Guo J: Circular RNA 0000096 affects cell growth and
migration in gastric cancer. Br J Cancer. 116:626–633. 2017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wei CB, Tao K, Jiang R, Zhou LD, Zhang QH
and Yuan CS: Quercetin protects mouse liver against
triptolide-induced hepatic injury by restoring Th17/Treg balance
through Tim-3 and TLR4-MyD88-NF-κB pathway. Int Immunopharmacol.
53:73–82. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu YP, Wan J, Long F, Tian J and Zhang C:
circPVT1 facilitates invasion and metastasis by regulating
miR-205-5p/c-FLIP axis in osteosarcoma. Cancer Manag Res.
12:1229–1240. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zheng F and Xu R: CircPVT1 contributes to
chemotherapy resistance of lung adenocarcinoma through
miR-145-5p/ABCC1 axis. Biomed Pharmacother. 124:1098282020.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang J, Huang K, Shi L, Zhang Q and Zhang
S: CircPVT1 promoted the progression of breast cancer by regulating
MiR-29a-3p-Mediated AGR2-HIF-1α pathway. Cancer Manag Res.
12:11477–11490. 2020. View Article : Google Scholar :
|
22
|
Chen T and Chen F: The role of circular
RNA plasmacytoma variant translocation 1 as a biomarker for
prognostication of acute myeloid leukemia. Hematology.
26:1018–1024. 2021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ghetti M, Vannini I, Bochicchio MT, Azzali
I, Ledda L, Marconi G, Melloni M, Fabbri F, Rondoni M, Chicchi R,
et al: Uncovering the expression of circPVT1 in the extracellular
vesicles of acute myeloid leukemia patients. Biomed Pharmacother.
165:1152352023. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sheng XF, Hong LL, Fan L, Zhang Y, Chen
KL, Mu J, Shen SY and Zhuang HF: Circular RNA PVT1 regulates cell
proliferation, migration, and apoptosis by stabilizing c-Myc and
downstream target CXCR4 expression in acute myeloid leukemia. Turk
J Haematol. 40:82–91. 2023. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ryan RJH, Drier Y, Whitton H, Cotton MJ,
Kaur J, Issner R, Gillespie S, Epstein CB, Nardi V, Sohani AR, et
al: Detection of enhancer-associated rearrangements reveals
mechanisms of oncogene dysregulation in B-cell lymphoma. Cancer
Discov. 5:1058–1071. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Brown FC, Still E, Koche RP, Yim CY, Takao
S, Cifani P, Reed C, Gunasekera S, Ficarro SB, Romanienko P, et al:
MEF2C phosphorylation is required for chemotherapy resistance in
acute myeloid leukemia. Cancer Discov. 8:478–497. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ma L, Liu J, Liu L, Duan G, Wang Q, Xu Y,
Xia F, Shan J, Shen J, Yang Z, et al: Overexpression of the
transcription factor MEF2D in hepatocellular carcinoma sustains
malignant character by suppressing G2-M transition genes. Cancer
Res. 74:1452–1462. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xiang J, Sun H, Su L, Liu L, Shan J, Shen
J, Yang Z, Chen J, Zhong X, Ávila MA, et al: Myocyte enhancer
factor 2D promotes colorectal cancer angiogenesis downstream of
hypoxia-inducible factor 1α. Cancer Lett. 400:117–126. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen W, Zhang K, Yang Y, Guo Z, Wang X,
Teng B, Zhao Q, Huang C and Qiu Z: MEF2A-mediated lncRNA HCP5
inhibits gastric cancer progression via MiR-106b-5p/p21 axis. Int J
Biol Sci. 17:623–634. 2021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xiao Q, Gan Y, Li Y, Fan L, Liu J, Lu P,
Liu J, Chen A, Shu G and Yin G: MEF2A transcriptionally upregulates
the expression of ZEB2 and CTNNB1 in colorectal cancer to promote
tumor progression. Oncogene. 40:3364–3377. 2021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xia L, Nie T, Lu F, Huang L, Shi X, Ren D,
Lu J, Li X, Xu T, Cui B, et al: Direct regulation of FNIP1 and
FNIP2 by MEF2 sustains MTORC1 activation and tumor progression in
pancreatic cancer. Autophagy. 20:505–524. 2024. View Article : Google Scholar
|
32
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Yi J, Wang L, Hu GS, Zhang YY, Du J, Ding
JC, Ji X, Shen HF, Huang HH, Ye F and Liu W: CircPVT1 promotes
ER-positive breast tumorigenesis and drug resistance by targeting
ESR1 and MAVS. EMBO J. 42:e1124082023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xie Y, Tan L, Wu K, Li D and Li C:
MiR-455-3p mediates PPARα through UBN2 to promote apoptosis and
autophagy in acute myeloid leukemia cells. Exp Hematol. 128:77–88.
2023. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhan T, Zhu Q, Han Z, Tan J, Liu M, Liu W,
Chen W, Chen X, Chen X, Deng J, et al: miR-455-3p functions as a
tumor suppressor by restraining Wnt/β-catenin signaling via TAZ in
pancreatic cancer. Cancer Manag Res. 12:1483–1492. 2020. View Article : Google Scholar :
|
36
|
Ni X, Ding Y, Yuan H, Shao J, Yan Y, Guo
R, Luan W and Xu M: Long non-coding RNA ZEB1-AS1 promotes colon
adenocarcinoma malignant progression via miR-455-3p/PAK2 axis. Cell
Prolif. 53:e127232020. View Article : Google Scholar
|
37
|
Liu A, Zhu J, Wu G, Cao L, Tan Z, Zhang S,
Jiang L, Wu J, Li M, Song L and Li J: Correction to: Antagonizing
miR-455-3p inhibits chemoresistance and aggressiveness in
esophageal squamous cell carcinoma. Mol Cancer. 20:1522021.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Gao X, Zhao H, Diao C, Wang X, Xie Y, Liu
Y, Han J and Zhang M: miR-455-3p serves as prognostic factor and
regulates the proliferation and migration of non-small cell lung
cancer through targeting HOXB5. Biochem Biophys Res Commun.
495:1074–1080. 2018. View Article : Google Scholar
|
39
|
Li Z, Meng Q, Pan A, Wu X, Cui J, Wang Y
and Li L: MicroRNA-455-3p promotes invasion and migration in triple
negative breast cancer by targeting tumor suppressor EI24.
Oncotarget. 8:19455–19466. 2017. View Article : Google Scholar :
|
40
|
Chai L, Kang XJ, Sun ZZ, Zeng MF, Yu SR,
Ding Y, Liang JQ, Li TT and Zhao J: MiR-497-5p, miR-195-5p and
miR-455-3p function as tumor suppressors by targeting hTERT in
melanoma A375 cells. Cancer Manag Res. 10:989–1003. 2018.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Ryu S, Park HS, Kim SM, Im K, Kim JA,
Hwang SM, Yoon SS and Lee DS: Shifting of erythroleukemia to
myelodysplastic syndrome according to the revised WHO
classification: Biologic and cytogenetic features of shifted
erythroleukemia. Leuk Res. 70:13–19. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li LC and Dahiya R: MethPrimer: Designing
primers for methylation PCRs. Bioinformatics. 18:1427–1431. 2002.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
44
|
Li L, Lv G, Wang B and Kuang L: The role
of lncRNA XIST/miR-211 axis in modulating the proliferation and
apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK
signaling. Biochem Biophys Res Commun. 503:2555–2562. 2018.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Li S, Liu F, Zheng K, Wang W, Qiu E, Pei
Y, Wang S, Zhang J and Zhang X: CircDOCK1 promotes the
tumorigenesis and cisplatin resistance of osteogenic sarcoma via
the miR-339-3p/IGF1R axis. Mol Cancer. 20:1612021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Matoba R, Morizane Y, Shiode Y, Hirano M,
Doi S, Toshima S, Araki R, Hosogi M, Yonezawa T and Shiraga F:
Suppressive effect of AMP-activated protein kinase on the
epithelial-mesenchymal transition in retinal pigment epithelial
cells. PLoS One. 12:e01814812017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li XX, Zhou JD, Wen XM, Zhang TJ, Wu DH,
Deng ZQ, Zhang ZH, Lian XY, He PF, Yao XY, et al: Increased MCL-1
expression predicts poor prognosis and disease recurrence in acute
myeloid leukemia. Onco Targets Ther. 12:3295–3304. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lu F, Zhang J, Ji M, Li P, Du Y, Wang H,
Zang S, Ma D, Sun X and Ji C: miR-181b increases drug sensitivity
in acute myeloid leukemia via targeting HMGB1 and Mcl-1. Int J
Oncol. 45:383–392. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Xu M and Li S: The opportunities and
challenges of using PD-1/PD-L1 inhibitors for leukemia treatment.
Cancer Lett. 593:2169692024. View Article : Google Scholar : PubMed/NCBI
|
50
|
Guo X, Gao C, Yang DH and Li S: Exosomal
circular RNAs: A chief culprit in cancer chemotherapy resistance.
Drug Resist Updat. 67:1009372023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Liu Q and Li S: Exosomal circRNAs: Novel
biomarkers and therapeutic targets for urinary tumors. Cancer Lett.
588:2167592024. View Article : Google Scholar : PubMed/NCBI
|
52
|
Sun YM, Wang WT, Zeng ZC, Chen TQ, Han C,
Pan Q, Huang W, Fang K, Sun LY, Zhou YF, et al: circMYBL2, a
circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1
to promote FLT3-ITD AML progression. Blood. 134:1533–1546. 2019.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Li W, Zhong C, Jiao J, Li P, Cui B, Ji C
and Ma D: Characterization of hsa_circ_0004277 as a new biomarker
for acute myeloid leukemia via circular RNA profile and
bioinformatics analysis. Int J Mol Sci. 18:5972017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Hu J, Han Q, Gu Y, Ma J, Mcgrath M, Qiao
F, Chen B, Song C and Ge Z: Circular RNA PVT1 expression and its
roles in acute lymphoblastic leukemia. Epigenomics. 10:723–732.
2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Tarumoto Y, Lin S, Wang J, Milazzo JP, Xu
Y, Lu B, Yang Z, Wei Y, Polyanskaya S, Wunderlich M, et al:
Salt-inducible kinase inhibition suppresses acute myeloid leukemia
progression in vivo. Blood. 135:56–70. 2020. View Article : Google Scholar :
|
56
|
Zhao L, Zhang P, Galbo PM, Zhou X, Aryal
S, Qiu S, Zhang H, Zhou Y, Li C, Zheng D, et al: Transcription
factor MEF2D is required for the maintenance of MLL-rearranged
acute myeloid leukemia. Blood Adv. 5:4727–4740. 2021. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ishikawa F, Miyoshi H, Nose K and
Shibanuma M: Transcriptional induction of MMP-10 by TGF-beta,
mediated by activation of MEF2A and downregulation of class IIa
HDACs. Oncogene. 29:909–919. 2010. View Article : Google Scholar
|
58
|
Gjyshi A, Dash S, Cen L, Cheng CH, Zhang
C, Yoder SJ, Teer JK, Armaiz-Pena GN and Monteiro ANA: Early
transcriptional response of human ovarian and fallopian tube
surface epithelial cells to norepinephrine. Sci Rep. 8:82912018.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Huang S, Li X, Zheng H, Si X, Li B, Wei G,
Li C, Chen Y, Chen Y, Liao W, et al: Loss of
super-enhancer-regulated circRNA Nfix induces cardiac regeneration
after myocardial infarction in adult mice. Circulation.
139:2857–2876. 2019. View Article : Google Scholar : PubMed/NCBI
|
60
|
Yang X, Han F, Hu X, Li G, Wu H, Can C,
Wei Y, Liu J, Wang R, Jia W, et al: EIF4A3-induced Circ_0001187
facilitates AML suppression through promoting ubiquitin-proteasomal
degradation of METTL3 and decreasing m6A modification level
mediated by miR-499a-5p/RNF113A pathway. Biomark Res. 11:592023.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Sand M, Skrygan M, Sand D, Georgas D, Hahn
SA, Gambichler T, Altmeyer P and Bechara FG: Expression of
microRNAs in basal cell carcinoma. Br J Dermatol. 167:847–855.
2012. View Article : Google Scholar : PubMed/NCBI
|
62
|
Zhang Z, Hou C, Meng F, Zhao X, Zhang Z,
Huang G, Chen W, Fu M and Liao W: MiR-455-3p regulates early
chondrogenic differentiation via inhibiting Runx2. FEBS Lett.
589:3671–3678. 2015. View Article : Google Scholar : PubMed/NCBI
|
63
|
Boisen MK, Dehlendorff C, Linnemann D,
Nielsen BS, Larsen JS, Osterlind K, Nielsen SE, Tarpgaard LS,
Qvortrup C, Pfeiffer P, et al: Tissue microRNAs as predictors of
outcome in patients with metastatic colorectal cancer treated with
first line capecitabine and oxaliplatin with or without
bevacizumab. PLoS One. 9:e1094302014. View Article : Google Scholar : PubMed/NCBI
|
64
|
Williams MM, Lee L, Hicks DJ, Joly MM,
Elion D, Rahman B, Mckernan C, Sanchez V, Balko JM, Stricker T, et
al: Key Survival factor, Mcl-1, correlates with sensitivity to
combined Bcl-2/Bcl-xL blockade. Mol Cancer Res. 15:259–268. 2017.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Chen D, Lu X, Yang F and Xing N: Circular
RNA circHIPK3 promotes cell proliferation and invasion of prostate
cancer by sponging miR-193a-3p and regulating MCL1 expression.
Cancer Manag Res. 11:1415–1423. 2019. View Article : Google Scholar : PubMed/NCBI
|
66
|
Strathdee G, Sim A, Soutar R, Holyoake TL
and Brown R: HOXA5 is targeted by cell-type-specific CpG island
methylation in normal cells and during the development of acute
myeloid leukaemia. Carcinogenesis. 28:299–309. 2007. View Article : Google Scholar
|
67
|
Zhou H, Zhang Q, Huang W, He C, Zhou C,
Zhou J and Ning Y: Epigenetic silencing of ZCCHC10 by the lncRNA
SNHG1 promotes progression and venetoclax resistance of acute
myeloid leukemia. Int J Oncol. 62:642023. View Article : Google Scholar : PubMed/NCBI
|