Glioma and glioblastoma ‑ how much do we (not) know? (Review)
- Authors:
- Ivana Jovčevska
- Nina Kočevar
- Radovan Komel
-
Affiliations: Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia - Published online on: August 26, 2013 https://doi.org/10.3892/mco.2013.172
- Pages: 935-941
This article is mentioned in:
Abstract
Bhatt AN, Mathur R, Farooque A, Verma A and Dwarakanath BS: Cancer biomarkers - current perspectives. Indian J Med Res. 132:129–149. 2010.PubMed/NCBI | |
Cho WC: Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer. 6:252007. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Ohgaki H, Wiestler OD, et al: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wen PY and Kesari S: Malignant gliomas in adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bailey P and Cushing H: A Classification of the Tumors of the Glioma Group on a Histogenetic Basis with a Correlated Study of Prognosis. JB Lippincott & Co.; Philadelphia, PA: 1926 | |
Galon J, Pages F, Marincola FM, et al: Cancer classification using the Immunoscore: a worldwide task force. J Transl Med. 10:2052012. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Holland EC and Cairncross JG: Glioma classification: a molecular reappraisal. Am J Pathol. 159:779–786. 2001. View Article : Google Scholar : PubMed/NCBI | |
Okada H, Kohanbash G, Zhu X, et al: Immunotherapeutic approaches for glioma. Crit Rev Immunol. 29:1–42. 2009. View Article : Google Scholar | |
Iacob G and Dinca EB: Current data and strategy in glioblastoma multiforme. J Med Life. 2:386–393. 2009.PubMed/NCBI | |
Bralten LB and French PJ: Genetic alterations in glioma. Cancers. 3:1129–1140. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshida J: Molecular neurosurgery using gene therapy to treat malignant glioma. Nagoya J Med Sci. 59:97–105. 1996.PubMed/NCBI | |
Li J, Di C, Mattox AK, Wu L and Adamson DC: The future role of personalized medicine in the treatment of glioblastoma multiforme. Pharmgenomics Pers Med. 3:111–127. 2010.PubMed/NCBI | |
Chi A and Komaki R: Treatment of brain metastasis from lung cancer. Cancers. 2:2100–2137. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mathieu D, Kondziolka D, Cooper PB, et al: Gamma knife radiosurgery for malignant melanoma brain metastases. Clin Neurosurg. 54:241–247. 2007.PubMed/NCBI | |
Daga A, Bottino C, Castriconi R, Gangemi R and Ferrini S: New perspectives in glioma immunotherapy. Curr Pharm Des. 17:2439–2467. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ali SA, McHayleh WM, Ahmad A, et al: Bevacizumab and irinotecan therapy in glioblastoma multiforme: a series of 13 cases. J Neurosurg. 109:268–272. 2008. View Article : Google Scholar : PubMed/NCBI | |
Farrell CJ and Plotkin SR: Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von Hippel-Lindau, and other syndromes. Neurol Clin. 25:925–946. viii2007. View Article : Google Scholar : PubMed/NCBI | |
Fisher JL, Schwartzbaum JA, Wrensch M and Wiemels JL: Epidemiology of brain tumors. Neurol Clin. 25:867–890. vii2007. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Li Y, Yu TS, et al: A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 488:522–526. 2012. View Article : Google Scholar : PubMed/NCBI | |
Westermark B: Glioblastoma - a moving target. Ups J Med Sci. 117:251–256. 2012. View Article : Google Scholar : PubMed/NCBI | |
Van Gool S, Maes W, Ardon H, Verschuere T, Van Cauter S and De Vleeschouwer S: Dendritic cell therapy of high-grade gliomas. Brain Pathol. 19:694–712. 2009.PubMed/NCBI | |
Gruber ML and Buster WP: Temozolomide in combination with irinotecan for treatment of recurrent malignant glioma. Am J Clin Oncol. 27:33–38. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pluchino S, Zanotti L, Deleidi M and Martino G: Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev. 48:211–219. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goldman S: Glia as neural progenitor cells. Trends Neurosci. 26:590–596. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA and Lemischka IR: A stem cell molecular signature. Science. 298:601–604. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hadnagy A, Gaboury L, Beaulieu R and Balicki D: SP analysis may be used to identify cancer stem cell populations. Exp Cell Res. 312:3701–3710. 2006. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Clarke ID, Terasaki M, et al: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821–5828. 2003.PubMed/NCBI | |
Altman J: Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol. 136:269–293. 1969. View Article : Google Scholar : PubMed/NCBI | |
Corotto FS, Henegar JA and Maruniak JA: Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett. 149:111–114. 1993. View Article : Google Scholar : PubMed/NCBI | |
Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al: Neurogenesis in the adult human hippocampus. Nat Med. 4:1313–1317. 1998. View Article : Google Scholar : PubMed/NCBI | |
Baylin SB and Ohm JE: Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 6:107–116. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jaenisch R and Bird A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 33(Suppl): 245–254. 2003. View Article : Google Scholar : PubMed/NCBI | |
Driessens G, Beck B, Caauwe A, Simons BD and Blanpain C: Defining the mode of tumour growth by clonal analysis. Nature. 488:527–530. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vermeulen L, Sprick MR, Kemper K, Stassi G and Medema JP: Cancer stem cells - old concepts, new insights. Cell Death Differ. 15:947–958. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gilbertson RJ and Graham TA: Cancer: Resolving the stem-cell debate. Nature. 488:462–463. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ailles LE and Weissman IL: Cancer stem cells in solid tumors. Curr Opin Biotechnol. 18:460–466. 2007. View Article : Google Scholar : PubMed/NCBI | |
Welte Y, Adjaye J, Lehrach HR and Regenbrecht CR: Cancer stem cells in solid tumors: elusive or illusive? Cell Commun Signal. 8:62010. View Article : Google Scholar : PubMed/NCBI | |
Makino S: The role of tumor stem-cells in regrowth of the tumor following drastic applications. Acta Unio Int Contra Cancrum. 15(Suppl 1): 196–198. 1959.PubMed/NCBI | |
Jordan CT, Guzman ML and Noble M: Cancer stem cells. N Engl J Med. 355:1253–1261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Yuan X, Zeng Z, et al: Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 5:672006. View Article : Google Scholar : PubMed/NCBI | |
Albini A and Sporn MB: The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 7:139–147. 2007. View Article : Google Scholar : PubMed/NCBI | |
Calabrese C, Poppleton H, Kocak M, et al: A perivascular niche for brain tumor stem cells. Cancer Cell. 11:69–82. 2007. View Article : Google Scholar : PubMed/NCBI | |
Crea F, Danesi R and Farrar WL: Cancer stem cell epigenetics and chemoresistance. Epigenomics. 1:63–79. 2009. View Article : Google Scholar | |
Goodell MA, Brose K, Paradis G, Conner AS and Mulligan RC: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 183:1797–1806. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hirschmann-Jax C, Foster AE, Wulf GG, et al: A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 101:14228–14233. 2004. | |
Martin CM, Meeson AP, Robertson SM, et al: Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 265:262–275. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shimano K, Satake M, Okaya A, et al: Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am J Pathol. 163:3–9. 2003. View Article : Google Scholar : PubMed/NCBI | |
Umemoto T, Yamato M, Nishida K, Yang J, Tano Y and Okano T: Limbal epithelial side-population cells have stem cell-like properties, including quiescent state. Stem Cells. 24:86–94. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yano S, Ito Y, Fujimoto M, Hamazaki TS, Tamaki K and Okochi H: Characterization and localization of side population cells in mouse skin. Stem Cells. 23:834–841. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ribou AC, Vigo J, Kohen E and Salmon JM: Microfluorometric study of oxygen dependence of (1″-pyrene butyl)-2-rhodamine ester probe in mitochondria of living cells. J Photochem Photobiol B. 70:107–115. 2003.PubMed/NCBI | |
Liu WH, Qian NS, Li R and Dou KF: Replacing Hoechst33342 with rhodamine123 in isolation of cancer stem-like cells from the MHCC97 cell line. Toxicol In Vitro. 24:538–545. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pfenninger CV, Roschupkina T, Hertwig F, et al: CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 67:5727–5736. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ieta K, Tanaka F, Haraguchi N, et al: Biological and genetic characteristics of tumor-initiating cells in colon cancer. Ann Surg Oncol. 15:638–648. 2008. View Article : Google Scholar : PubMed/NCBI | |
Monzani E, Facchetti F, Galmozzi E, et al: Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 43:935–946. 2007. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Hawkins C, Clarke ID, et al: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yin AH, Miraglia S, Zanjani ED, et al: AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 90:5002–5012. 1997.PubMed/NCBI | |
Miraglia S, Godfrey W, Yin AH, et al: A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 90:5013–5021. 1997.PubMed/NCBI | |
Mizrak D, Brittan M and Alison M: CD133: molecule of the moment. J Pathol. 214:3–9. 2008. View Article : Google Scholar : PubMed/NCBI | |
Florek M, Haase M, Marzesco AM, et al: Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res. 319:15–26. 2005. View Article : Google Scholar : PubMed/NCBI | |
Weigmann A, Corbeil D, Hellwig A and Huttner WB: Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA. 94:12425–12430. 1997. View Article : Google Scholar | |
Shmelkov SV, Jun L, St Clair R, et al: Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood. 103:2055–2061. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bao S, Wu Q, McLendon RE, et al: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yamanaka R: Cell- and peptide-based immunotherapeutic approaches for glioma. Trends Mol Med. 14:228–235. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bulik M, Jancalek R, Vanicek J, Skoch A and Mechl M: Potential of MR spectroscopy for assessment of glioma grading. Clin Neurol Neurosurg. 115:146–153. 2013. View Article : Google Scholar : PubMed/NCBI | |
Komoroski RA, Heimberg C, Cardwell D and Karson CN: Effects of gender and region on proton MRS of normal human brain. Magn Reson Imaging. 17:427–433. 1999. View Article : Google Scholar : PubMed/NCBI | |
Li BS, Wang H and Gonen O: Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magn Reson Imaging. 21:923–928. 2003. View Article : Google Scholar : PubMed/NCBI | |
Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mitchell PS, Parkin RK, Kroh EM, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Li P, Li A, et al: Plasma specific miRNAs as predictive biomarkers for diagnosis and prognosis of glioma. J Exp Clin Cancer Res. 31:972012. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Mason WP, van den Bent MJ, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI | |
Grossman R, Rudek MA, Brastianos H, et al: The impact of bevacizumab on temozolomide concentrations in intracranial U87 gliomas. Cancer Chemother Pharmacol. 70:129–139. 2012. View Article : Google Scholar : PubMed/NCBI | |
Walker MD, Alexander E Jr, Hunt WE, et al: Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg. 49:333–343. 1978. View Article : Google Scholar : PubMed/NCBI | |
Reardon DA, Quinn JA, Rich JN, et al: Phase I trial of irinotecan plus temozolomide in adults with recurrent malignant glioma. Cancer. 104:1478–1486. 2005. View Article : Google Scholar : PubMed/NCBI | |
Abbott NJ, Ronnback L and Hansson E: Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 7:41–53. 2006. View Article : Google Scholar : PubMed/NCBI | |
Anderson CM and Nedergaard M: Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci. 26:340–345. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nedergaard M, Ransom B and Goldman SA: New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26:523–530. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pardridge WM: Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv. 3:90–105. 512003. View Article : Google Scholar : PubMed/NCBI | |
Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 45:545–552. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cserr HF and Bundgaard M: Blood-brain interfaces in vertebrates: a comparative approach. Am J Physiol. 246:R277–R288. 1984.PubMed/NCBI | |
Hickey MJ, Malone CC, Erickson KL, et al: Cellular and vaccine therapeutic approaches for gliomas. J Transl Med. 8:1002010. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
Norden AD, Young GS, Setayesh K, et al: Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology. 70:779–787. 2008. View Article : Google Scholar : PubMed/NCBI | |
Afanasieva TA, Wittmer M, Vitaliti A, Ajmo M, Neri D and Klemenz R: Single-chain antibody and its derivatives directed against vascular endothelial growth factor: application for anti-angiogenic gene therapy. Gene Ther. 10:1850–1859. 2003. View Article : Google Scholar | |
Sanz L, Blanco B and Alvarez-Vallina L: Antibodies and gene therapy: teaching old ‘magic bullets’ new tricks. Trends Immunol. 25:85–91. 2004. | |
Furnari FB, Fenton T, Bachoo RM, et al: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21:2683–2710. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vredenburgh JJ, Desjardins A, Herndon JE II, et al: Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res. 13:1253–1259. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vredenburgh JJ, Desjardins A, Herndon JE II, et al: Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 25:4722–4729. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hurwitz H, Fehrenbacher L, Novotny W, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
Johnson DH, Fehrenbacher L, Novotny WF, et al: Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 22:2184–2191. 2004. View Article : Google Scholar | |
Friedman HS, Petros WP, Friedman AH, et al: Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol. 17:1516–1525. 1999.PubMed/NCBI | |
Prados MD, Lamborn K, Yung WK, et al: A phase 2 trial of irinotecan (CPT-11) in patients with recurrent malignant glioma: a North American Brain Tumor Consortium study. Neuro Oncol. 8:189–193. 2006. View Article : Google Scholar | |
Stark-Vance V: Bevacizumab and CPT-11 in the treatment of relapsed malignant glioma. Neuro Oncol. 7:3692005. | |
Pope WB, Lai A, Nghiemphu P, Mischel P and Cloughesy TF: MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology. 66:1258–1260. 2006. View Article : Google Scholar : PubMed/NCBI | |
Narayana A, Kelly P, Golfinos J, et al: Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J Neurosurg. 110:173–180. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mountain A: Gene therapy: the first decade. Trends Biotechnol. 18:119–128. 2000. View Article : Google Scholar | |
Carter P: Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 1:118–129. 2001. View Article : Google Scholar : PubMed/NCBI | |
Segal DM, Weiner GJ and Weiner LM: Bispecific antibodies in cancer therapy. Curr Opin Immunol. 11:558–562. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hudson PJ: Recombinant antibody constructs in cancer therapy. Curr Opin Immunol. 11:548–557. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cortez-Retamozo V, Backmann N, Senter PD, et al: Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 64:2853–2857. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vu KB, Ghahroudi MA, Wyns L and Muyldermans S: Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol. 34:1121–1131. 1997. View Article : Google Scholar : PubMed/NCBI | |
Song E, Zhu P, Lee SK, et al: Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 23:709–717. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sioud M: Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol. 348:1079–1090. 2005. View Article : Google Scholar |