1
|
Fitzgerald MP, Gourronc F, Teoh ML, et al:
Human chondrosarcoma cells acquire an epithelial-like gene
expression pattern via an epigenetic switch: evidence for
mesenchymal-epithelial transition during sarcomagenesis. Sarcoma.
2011(598218)2011. View Article : Google Scholar
|
2
|
Yang J, Du X, Wang G, et al: Mesenchymal
to epithelial transition in sarcomas. Eur J Cancer. 50:593–601.
2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wells A, Yates C and Shepard CR:
E-cadherin as an indicator of mesenchymal to epithelial reverting
transitions during the metastatic seeding of disseminated
carcinomas. Clin Exp Metastasis. 25:621–628. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wiles ET, Bell R, Thomas D, Beckerle M and
Lessnick SL: ZEB2 represses the epithelial phenotype and
facilitates metastasis in Ewing sarcoma. Genes Cancer. 4:486–500.
2013. View Article : Google Scholar
|
5
|
Latorre IJ, Frese KK and Javier RT: Tigh.
junction proteins and cancer. Tight Junctions. Gonzalez-Mariscal L:
Springer US; New York, NY: pp. 116–134. 2006, View Article : Google Scholar
|
6
|
Chipman JK, Mally A and Edwards GO:
Disruption of gap junctions in toxicity and carcinogenicity.
Toxicol Sci. 71:146–153. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gill GA, Buda A, Moorghen M, et al:
Characterisation of adherens and tight junctional molecules in
normal animal larynx; determining a suitable model for studying
molecular abnormalities in human laryngopharyngeal reflux. J Clin
Pathol. 58:1265–1270. 2005. View Article : Google Scholar
|
8
|
Kolegraff K, Nava P, Helms MN, et al: Loss
of desmocollin-2 confers a tumorigenic phenotype to colonic
epithelial cells through activation of Akt/β-catenin signaling. Mol
Biol Cell. 22:1121–1134. 2011.PubMed/NCBI
|
9
|
Yang L, Chen Y, Cui T, et al: Desmoplakin
acts as a tumor suppressor by inhibition of the Wnt/β-catenin
signaling pathway in human lung cancer. Carcinogenesis.
33:1863–1870. 2012.PubMed/NCBI
|
10
|
Holen I, Whitworth J, Nutter F, et al:
Loss of plakoglobin promotes decreased cell-cell contact, increased
invasion and breast cancer cell dissemination in vivo. Breast
Cancer Res. 14:R862012. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Yashiro M, Nishioka N and Hirakawa K:
Decreased expression of the adhesion molecule desmoglein-2 is
associated with diffuse-type gastric carcinoma. Eur J Cancer.
42:2397–2403. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Leithe E, Sirnes S, Omori Y, et al:
Downregulation of gap junctions in cancer cells. Crit Rev Oncog.
12:225–256. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Galoian K, Scully S, McNamara G, et al:
Antitumorigenic effect of brain proline rich polypeptide-1 in human
chondrosarcoma. Neurochem Res. 34:2117–2121. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Galoian K, Temple TH and Galoyan A:
Cytostatic effect of the hypothalamic cytokine PRP-1 is mediated by
mTOR and cMyc inhibition in high grade chondrosarcoma. Neurochem
Res. 36:812–818. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Galoian KA, Temple TH and Galoyan A:
Cytostatic effect of novel mTOR inhibitor, PRP-1 (galarmin) in MDA
231 (ER-) breast carcinoma cell line. PRP-1 inhibits mesenchymal
tumors. Tumour Biol. 32:745–751. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Galoian K, Temple TH and Galoyan A: mTORC1
inhibition and ECM-cell adhesion-independent drug resistance via
PI3K-AKT and PI3K-RAS-MAPK feedback loops. Tumour Biol. 33:885–890.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Galoyan AA and Aprikyan VS: A new
hypothalamic polypeptide is a regulator of myelopoiesis. Neurochem
Res. 27:305–312. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Galoyan A: Neurochemistry of brain
neuroendocrine immune system: signal molecules. Neurochem Res.
25:1343–1355. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Silberberg M, Charron AJ, Bacallao R, et
al: Mispolarization of desmosomal proteins and altered
intercellular adhesion in autosomal dominant polycystic kidney
disease. Am J Physiol Renal Physiol. 288:F1153–F1163. 2005.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Delker DA, McGettigan BM, Kanth P, Pop S,
Neklason DW, Bronner MP, Burt RW and Hagedorn CH: RN. sequencing of
sessile serrated colon polyps identifies differentially expressed
genes and immunohistochemical markers. PLoS One. 9:e883672014.
View Article : Google Scholar
|
21
|
Rosette C, Roth RB, Oeth P, et al: Role of
ICAM1 in invasion of human breast cancer cells. Carcinogenesis.
26:943–950. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chun MG and Hanahan D: Genetic deletion of
the desmosomal component desmoplakin promotes tumor microinvasion
in a mouse model of pancreatic neuroendocrine carcinogenesis. PLoS
Genet. 6:e10011202010. View Article : Google Scholar
|
23
|
Dusek RL and Attardi LD: Desmosomes: new
perpetrators in tumour suppression. Nat Rev Cancer. 11:317–323.
2011. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Chidgey M and Dawson C: Desmosomes: a role
in cancer? Br J Cancer. 96:1783–1787. 2007. View Article : Google Scholar
|
25
|
Delva E, Tucker DK and Kowalczyk AP: The
desmosome. Cold Spring Harb Perspect Biol. 1:a0025432009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Green KJ and Gaudry CA: Are desmosomes
more than tethers for intermediate filaments? Nat Rev Mol Cell
Biol. 1:208–216. 2000. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Rieger-Christ KM, Ng L, Hanley RS, et al:
Restoration of plakoglobin expression in bladder carcinoma cell
lines suppresses cell migration and tumorigenic potential. Br J
Cancer. 92:2153–2159. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Simcha I, Geiger B, Yehuda-Levenberg S, et
al: Suppression of tumorigenicity by plakoglobin: an augmenting
effect of N-cadherin. J Cell Biol. 133:199–209. 1996. View Article : Google Scholar : PubMed/NCBI
|
29
|
Aktary Z and Pasdar M: Plakoglobin: role
in tumorigenesis and metastasis. Int J Cell Biol. 2012(189521)2012.
View Article : Google Scholar
|
30
|
Yin T, Getsios S, Caldelari R, et al:
Plakoglobin supresses keratinocyte motility through both cell-cell
adhesion-dependent and -independent mechanisms. Proc Natl Acad Sci
USA. 102:5420–5425. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tam LW and Weinberg RA: The epigenetics of
epithelial-mesenchymal plasticity in cancer. Nat Med. 19:1438–1449.
2013. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Shi L, Sun L, Li Q, et al: Histone
demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes
hormonally responsive breast carcinogenesis. Proc Natl Acad Sci
USA. 108:7541–7546. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kirmizis A, Bartley SM, Kuzmichev A,
Margueron R, et al: Silencing of human polycomb target genes is
associated with methylation of histone H3 Lys 27. Genes Dev.
18:1592–1605. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li LL, Xue AM, Li BX, et al: JMJD2A
contributes to breast cancer progression through transcriptional
repression of the tumor suppressor ARHI. Breast Cancer Res.
16:R562014. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Kogure M, Takawa M, Cho HS, et al:
Deregulation of the histone demethylase JMJD2A is involved in human
carcinogenesis through regulation of the G(1)/S transition. Cancer
Lett. 336:76–84. 2013. View Article : Google Scholar : PubMed/NCBI
|