1
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bonnet D and Dick JE: Human acute myeloid
leukemia is organized as a hierarchy that originates from a
primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ikeda J, Tian T, Wang Y, Hori Y, Honma K,
Wada N and Morii E: Expression of FoxO3a in clinical cases of
malignant lymphoma. Pathol Res Pract. 209:716–720. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Matsui W, Wang Q, Barber JP, Brennan S,
Smith BD, Borrello I, McNiece I, Lin L, Ambinder RF, Peacock C, et
al: Clonogenic multiple myeloma progenitors, stem cell properties,
and drug resistance. Cancer Res. 68:190–197. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
O'Brien CA, Pollett A, Gallinger S and
Dick JE: A human colon cancer cell capable of initiating tumor
growth in immunodeficient mice. Nature. 445:106–110. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Rahadiani N, Ikeda J, Mamat S, Matsuzaki
S, Ueda Y, Umehara R, Tian T, Wang Y, Enomoto T, Kimura T, et al:
Expression of aldehyde dehydrogenase 1 (ALDH1) in endometrioid
adenocarcinoma and its clinical implications. Cancer Sci.
102:903–908. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Ricci-Vitiani L, Lombardi DG, Pilozzi E,
Biffoni M, Todaro M, Peschle C and De Maria R: Identification and
expansion of human colon-cancer-initiating cells. Nature.
445:111–115. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Singh SK, Hawkins C, Clarke ID, Squire JA,
Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sunayama J, Sato A, Matsuda K, Tachibana
K, Watanabe E, Seino S, Suzuki K, Narita Y, Shibui S, Sakurada K,
et al: FoxO3a functions as a key integrator of cellular signals
that control glioblastoma stem-like cell differentiation and
tumorigenicity. Stem Cells. 29:1327–1337. 2011.PubMed/NCBI
|
11
|
Touil Y, Zuliani T, Wolowczuk I, Kuranda
K, Prochazkova J, Andrieux J, Le Roy H, Mortier L, Vandomme J, Jouy
N, et al: The PI3K/AKT signaling pathway controls the quiescence of
the low-Rhodamine123-retention cell compartment enriched for
melanoma stem cell activity. Stem Cells. 31:641–651. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Yin S, Li J, Hu C, Chen X, Yao M, Yan M,
Jiang G, Ge C, Xie H, Wan D, et al: CD133 positive hepatocellular
carcinoma cells possess high capacity for tumorigenicity. Int J
Cancer. 120:1444–1450. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Coffer PJ and Burgering BM: Stressed
marrow: FoxOs stem tumour growth. Nat Cell Biol. 9:251–253. 2007.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie
MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al: Association
of reactive oxygen species levels and radioresistance in cancer
stem cells. Nature. 458:780–783. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Santamaría CM, Chillón MC, García-Sanz R,
Pérez C, Caballero MD, Ramos F, de Coca AG, Alonso JM, Giraldo P,
Bernal T, et al: High FoxO3a expression is associated with a poorer
prognosis in AML with normal cytogenetics. Leuk Res. 33:1706–1709.
2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tothova Z, Kollipara R, Huntly BJ, Lee BH,
Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams
IR, Sears C, et al: FoxOs are critical mediators of hematopoietic
stem cell resistance to physiologic oxidative stress. Cell.
128:325–339. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kanzler H, Küppers R, Hansmann ML and
Rajewsky K: Hodgkin and Reed-Sternberg cells in Hodgkin's disease
represent the outgrowth of a dominant tumor clone derived from
(crippled) germinal center B cells. J Exp Med. 184:1495–1505. 1996.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Marofioti T, Hummel M, Foss HD, Laumen H,
Korbjuhn P, Anagnostopoulos I, Lammert H, Demel G, Theil J, Wirth T
and Stein H: Hodgkin and reed-sternberg cells represent an
expansion of single clone originating from a germinal center B-cell
with functional immunoglobulin gene rearrangements but defective
immunoglobulin transcription. Blood. 95:1443–1450. 2000.PubMed/NCBI
|
19
|
Jones RJ, Gocke CD, Kasamon YL, Miller CB,
Perkins B, Barber JP, Vala MS, Gerber JM, Gellert LL, Siedner M, et
al: Circulating clonotypic B cells in classic Hodgkin lymphoma.
Blood. 113:5920–5926. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nakashima M, Ishii Y, Watanabe M, Togano
T, Umezawa K, Higashihara M, Watanabe T and Horie R: The side
population, as a precursor of Hodgkin and Reed-Sternberg cells and
a target for nuclear factor-κB inhibitors in Hodgkin's lymphoma.
Cancer Sci. 101:2490–2496. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ikeda J, Mamat S, Tian T, Wang Y, Luo W,
Rahadiani N, Aozasa K and Morii E: Reactive oxygen species and
aldehyde dehydrogenase activity in Hodgkin lymphoma cells. Lab
Invest. 92:606–614. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ikeda J, Mamat S, Tian T, Wang Y,
Rahadiani N, Aozasa K and Morii E: Tumorigenic potential of
mononucleated small cells of Hodgkin lymphoma cell lines. Am J
Pathol. 177:3081–3088. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lasorella A, Benezra R and Iavarone A: The
ID proteins: Master regulators of cancer stem cells and tumour
aggressiveness. Nat Rev Cancer. 14:77–91. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Birkenkamp KU, Essafi A, van der Vos KE,
da Costa M, Hui RC, Holstege F, Koenderman L, Lam EW and Coffer PJ:
FoxO3a induces differentiation of Bcr-Abl-transformed cells through
transcriptional down-regulation of Id1. J Biol Chem. 282:2211–2220.
2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hau PM, Tsang CM, Yip YL, Huen MS and Tsao
SW: Id1 interacts and stabilizes the Epstein-Barr virus latent
membrane protein 1 (LMP1) in nasopharyngeal epithelial cells. PLoS
One. 6:e211762011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li HM, Zhuang ZH, Wang Q, Pang JC, Wang
XH, Wong HL, Feng HC, Jin DY, Ling MT, Wong YC, et al: Epstein-Barr
virus latent membrane protein 1 (LMP1) upregulates Id1 expression
in nasopharyngeal epithelial cells. Oncogene. 23:4488–4494. 2004.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Lo AK, Dawson CW, Lo KW, Yu Y and Young
LS: Upregulation of Id1 by Epstein-Barr virus-encoded LMP1 confers
resistance to TGFbeta-mediated growth inhibition. Mol Cancer.
9:1552010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gupta GP, Perk J, Acharyya S, de Candia P,
Mittal V, Todorova-Manova K, Gerald WL, Brogi E, Benezra R and
Massagué J: ID genes mediate tumor reinitiation during breast
cancer lung metastasis. Proc Natl Acad Sci USA. 104:19506–19511.
2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wada N, Ikeda J, Hori Y, Fujita S, Ogawa
H, Soma T, Sugiyama H, Fukuhara S, Kanamaru A, Hino M, et al:
Epstein-barr virus in diffuse large B-cell lymphoma in
immunocompetent patients in Japan is as low as in Western
Countries. J Med Virol. 83:317–321. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hummel M, Anagnostopoulos I, Dallenbach F,
Korbjuhn P, Dimmler C and Stein H: EBV infection patterns in
Hodgkin's disease and normal lymphoid tissue: Expression and
cellular localization of EBV gene products. Br J Haematol.
82:689–694. 1992. View Article : Google Scholar : PubMed/NCBI
|
31
|
O'Brien CA, Kreso A, Ryan P, Hermans KG,
Gibson L, Wang Y, Tsatsanis A, Gallinger S and Dick JE: ID1 and ID3
regulate the self-renewal capacity of human colon cancer-initiating
cells through p21. Cancer Cell. 21:777–792. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sun W, Guo MM, Han P, Lin JZ, Liang FY,
Tan GM, Li HB, Zeng M and Huang XM: Id-1 and the p65 subunit of
NF-κB promote migration of nasopharyngeal carcinoma cells and are
correlated with poor prognosis. Carcinogenesis. 33:810–817. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Mathas S, Janz M, Hummel F, Hummel M,
Wollert-Wulf B, Lusatis S, Anagnostopoulos I, Lietz A, Sigvardsson
M, Jundt F, et al: Intrinsic inhibition of transcription factor E2A
by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic
B cells in Hodgkin lymphoma. Nat Immunol. 7:207–215. 2006.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Renné C, Martin-Subero JI, Eickernjäger M,
Hansmann ML, Küppers R, Siebert R and Bräuninger A: Aberrant
expression of ID2, a suppressor of B-cell-specific gene expression,
in Hodgkin's lymphoma. Am J Pathol. 169:655–664. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Medina DJ, Abass-Shereef J, Walton K,
Goodell L, Aviv H, Strair RK and Budak-Alpdogan T: Cobblestone-area
forming cells derived from patients with mantle cell lymphoma are
enriched for CD133+ tumor-initiating cells. PLoS One.
9:e910422014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ling MT, Wang X, Ouyang XS, Xu K, Tsao SW
and Wong YC: Id-1 expression promotes cell survival through
activation of NF-kappaB signalling pathway in prostate cancer
cells. Oncogene. 22:4498–4508. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hinz M, Lemke P, Anagnostopoulos I, Hacker
C, Krappmann D, Mathas S, Dörken B, Zenke M, Stein H and
Scheidereit C: Nuclear factor kappaB-dependent gene expression
profiling of Hodgkin's disease tumor cells, pathogenetic
significance, and link to constitutive signal transducer and
activator of transcription 5a activity. J Exp Med. 196:605–617.
2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hinz M, Löser P, Mathas S, Krappmann D,
Dörken B and Scheidereit C: Constitutive NF-kappaB maintains high
expression of a characteristic gene network, including CD40, CD86,
and a set of antiapoptotic genes in Hodgkin/Reed-Sternberg cells.
Blood. 97:2798–2807. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Küppers R: The biology of Hodgkin's
lymphoma. Nat Rev Cancer. 9:15–27. 2009. View Article : Google Scholar : PubMed/NCBI
|