
Systematic analysis of the achaete-scute complex-like gene signature in clinical cancer patients
- Authors:
- Chih‑Yang Wang
- Payam Shahi
- John Ting Wei Huang
- Nam Nhut Phan
- Zhengda Sun
- Yen‑Chang Lin
- Ming‑Derg Lai
- Zena Werb
-
Affiliations: Department of Anatomy, University of California, San Francisco, CA 94143, USA, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA, Department of Oncology, University of California, San Francisco, CA 94143, USA, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh 7000, Vietnam, Department of Radiology, University of California, San Francisco, CA 94143, USA, Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan 11114, R.O.C., Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 11114, R.O.C. - Published online on: November 25, 2016 https://doi.org/10.3892/mco.2016.1094
- Pages: 7-18
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Forman D, Ferlay J, Stewart B and Wild C: The global and regional burden of cancer. World cancer report. 64–185. 2014. | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ and Joyner AL: Mammalian achaete-scute homolog-1 is required for the early development of olfactory and autonomic neurons. Cell. 75:463–476. 1993. View Article : Google Scholar : PubMed/NCBI | |
Gestblom C, Grynfeld A, Ora I, Ortoft E, Larsson C, Axelson H, Sandstedt B, Cserjesi P, Olson EN and Påhlman S: The basic helix-loop-helix transcription factor dHAND, a marker gene for the developing human sympathetic nervous system, is expressed in both high- and low-stage neuroblastomas. Lab Invest. 79:67–79. 1999.PubMed/NCBI | |
Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma QF and Goulding M: ASCL1 and GSH1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci. 9:770–778. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pattyn A, Simplicio N, van Doorninck JH, Goridis C, Guillemot F and Brunet JF: ASCL1/MASH1 is required for the development of central serotonergic neurons. Nat Neurosci. 7:589–595. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ge WH, He F, Kim KJ, Blanchi B, Coskun V, Nguyen L, Wu X, Zhao J, Heng JI, Martinowich K, et al: Coupling of cell migration with neurogenesis by proneural bHLH factors. Proc Natl Acad Sci USA. 103:1319–1324. 2006. View Article : Google Scholar : PubMed/NCBI | |
Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M, Baylin SB and Ball DW: An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature. 386:852–855. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ball DW, Azzoli CG, Baylin SB, Chi D, Dou S, Donis-Keller H, Cumaraswamy A, Borges M and Nelkin BD: Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors. Proc Natl Acad Sci USA. 90:5648–5652. 1993. View Article : Google Scholar : PubMed/NCBI | |
Guillemot F, Nagy A, Auerbach A, Rossant J and Joyner AL: Essential role of MASH-2 in extraembryonic development. Nature. 371:333–336. 1994. View Article : Google Scholar : PubMed/NCBI | |
Schuijers J, Junker JP, Mokry M, Hatzis P, Koo BK, Sasselli V, van der Flier LG, Cuppen E, van Oudenaarden A and Clevers H: ASCL2 acts as an R-spondin/WNT-responsive switch to control stemness in intestinal crypts. Cell Stem Cell. 16:158–170. 2015. View Article : Google Scholar : PubMed/NCBI | |
van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE, Begthel H, van den Born M, Guryev V, Oving I, et al: Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell. 136:903–912. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Pan Q, Shang Y, Zhu R, Ye J, Liu Y, Zhong X, Li S, He Y, Chen L, et al: MicroRNA-200 (miR-200) cluster regulation by achaete scute-like 2 (ASCL2): Impact on the epithelial-mesenchymal transition in colon cancer cells. J Biol Chem. 289:36101–36115. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rugel-Stahl A, Elliott ME and Ovitt CE: Ascl3 marks adult progenitor cells of the mouse salivary gland. Stem Cell Res. 8:379–387. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jonsson M, Björntorp Mark E, Brantsing C, Brandner JM, Lindahl A and Asp J: HASH4, a novel human achaete-scute homologue found in fetal skin. Genomics. 84:859–866. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, et al: Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 9:166–180. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ewald JA, Downs TM, Cetnar JP and Ricke WA: Expression microarray meta-analysis identifies genes associated with Ras/MAPK and related pathways in progression of muscle-invasive bladder transition cell carcinoma. PLoS One. 8:e554142013. View Article : Google Scholar : PubMed/NCBI | |
Moher D, Liberati A, Tetzlaff J and Altman DG: PRISMA Group: Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ. 339:b25352009. View Article : Google Scholar : PubMed/NCBI | |
Rhodes DR and Chinnaiyan AM: Integrative analysis of the cancer transcriptome. Nat Genet. 37:S31–S37. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rhodes DR, Yu JJ, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI | |
Casarosa S, Fode C and Guillemot F: MASH1 regulates neurogenesis in the ventral telencephalon. Development. 126:525–534. 1999.PubMed/NCBI | |
Pacary E, Heng JL, Azzarelli R, Riou P, Castro D, Lebel-Potter M, Parras C, Bell DM, Ridley AJ, Parsons M and Guillemot F: Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron. 69:1069–1084. 2011. View Article : Google Scholar : PubMed/NCBI | |
Augustyn A, Borromeo M, Wang T, Fujimoto J, Shao C, Dospoy PD, Lee V, Tan C, Sullivan JP, Larsen JE, et al: ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proc Natl Acad Sci USA. 111:14788–14793. 2014. View Article : Google Scholar : PubMed/NCBI | |
Martino-Echarri E, Fernández-Rodríguez R, Rodríguez-Baena FJ, Barrientos-Durán A, Torres-Collado AX, Plaza-Calonge Mdel C, Amador-Cubero S, Cortés J, Reynolds LE, Hodivala-Dilke KM, et al: Contribution of ADAMTS1 as a tumor suppressor gene in human breast carcinoma. Linking its tumor inhibitory properties to its proteolytic activity on nidogen-1 and nidogen-2. Int J Cancer. 133:2315–2324. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, et al: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 17:41–52. 2010. View Article : Google Scholar : PubMed/NCBI | |
Johnson JE, Birren SJ and Anderson DJ: Two rat homologues of drosophila achaete-scute specifically expressed in neuronal precursors. Nature. 346:858–861. 1990. View Article : Google Scholar : PubMed/NCBI | |
Yan KS and Kuo CJ: ASCL2 reinforces intestinal stem cell identity. Cell Stem Cell. 16:105–106. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu XD, Chen X, Zhong B, Wang A, Wang X, Chu F, Nurieva RI, Yan X, Chen P, van der Flier LG, et al: Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature. 507:513–518. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu R, Yang YT, Tian Y, Bai J, Zhang X, Li X, Peng Z, He Y, Chen L, Pan Q, et al: ASCL2 knockdown results in tumor growth arrest by miRNAs-302b-related inhibition of colon cancer progenitor cells. Plos One. 7:e321702012. View Article : Google Scholar : PubMed/NCBI | |
Ziskin JL, Dunlap D, Yaylaoglu M, Fodor IK, Forrest WF, Patel R, Ge N, Hutchins GG, Pine JK, Quirke P, et al: In situ validation of an intestinal stem cell signature in colorectal cancer. Gut. 62:1012–1023. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bullard T, Koek L, Roztocil E, Kingsley PD, Mirels L and Ovitt CE: ASCL3 expression marks a progenitor population of both acinar and ductal cells in mouse salivary glands. Dev Biol. 320:72–78. 2008. View Article : Google Scholar : PubMed/NCBI | |
Amid C, Bahr A, Mujica A, Sampson N, Bikar SE, Winterpacht A, Zabel B, Hankeln T and Schmidt ER: Comparative genomic sequencing reveals a strikingly similar architecture of a conserved syntenic region on human chromosome 11p15.3 (including gene ST5) and mouse chromosome 7. Cytogenet Cell Genet. 93:284–290. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene Ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lenhart R, Kirov S, Desilva H, Cao J, Lei M, Johnston K, Peterson R, Schweizer L, Purandare A, Ross-Macdonald P, et al: Sensitivity of small cell lung cancer to BET inhibition is mediated by regulation of ASCL1 gene expression. Mol Cancer Ther. 14:2167–2174. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu XG, Chen L, Wang QL, Zhao XL, Tan J, Cui YH, Liu XD, Zhang X and Bian XW: Elevated expression of ASCL2 is an independent prognostic indicator in lung squamous cell carcinoma. J Clin Pathol. 69:313–318. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sureban SM, Qu D and Houchen CW: Regulation of miRNAs by agents targeting the tumor stem cell markers DCLK1, MSI1, LGR5, and BMI1. Curr Pharmacol Rep. 1:217–222. 2015. View Article : Google Scholar : PubMed/NCBI | |
López-Carballo G, Moreno L, Masia S, Pérez P and Barettino D: Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J Biol Chem. 277:25297–25304. 2002. View Article : Google Scholar : PubMed/NCBI | |
Letinic K, Zoncu R and Rakic P: Origin of GABAergic neurons in the human neocortex. Nature. 417:645–649. 2002. View Article : Google Scholar : PubMed/NCBI | |
Persson P, Jögi A, Grynfeld A, Påhlman S and Axelson H: HASH-1 and E2-2 are expressed in human neuroblastoma cells and form a functional complex. Biochem Biophys Res Commun. 274:22–31. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang XY, el H Dakir, Naizhen X, Jensen-Taubman SM, DeMayo FJ and Linnoila RI: Achaete-scute homolog-1 linked to remodeling and preneoplasia of pulmonary epithelium. Lab Invest. 87:527–539. 2007. View Article : Google Scholar : PubMed/NCBI | |
de Pontual L, Népote V, Attié-Bitach T, Al Halabiah H, Trang H, Elghouzzi V, Levacher B, Benihoud K, Augé J, Faure C, et al: Noradrenergic neuronal development is impaired by mutation of the proneural HASH-1 gene in congenital central hypoventilation syndrome (Ondine's curse). Hum Mol Genet. 12:3173–3180. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Udaka N, Okudela K, Yazawa T and Kitamura H: Mechanisms of neuroendocrine differentiation in pulmonary neuroendocrine cells and small cell carcinoma. Endocr Pathol. 14:133–139. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kunnimalaiyaan M, Traeger K and Chen H: Conservation of the NOTCH1 signaling pathway in gastrointestinal carcinoid cells. Am J Physiol Gastrointest Liver Physiol. 289:G636–G642. 2005.PubMed/NCBI | |
Kim HJ, McMillan E, Han F and Svendsen CN: Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem cells. 27:390–398. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nakayama H, Scott IC and Cross JC: The transition to endoreduplication in trophoblast giant cells is regulated by the mSNA zinc finger transcription factor. Dev Biol. 199:150–163. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama A, Xin L, Sharov AA, Thomas M, Mowrer G, Meyers E, Piao Y, Mehta S, Yee S, Nakatake Y, et al: Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. Cell Stem Cell. 5:420–433. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tanaka M, Gertsenstein M, Rossant J and Nagy A: Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev Biol. 190:55–65. 1997. View Article : Google Scholar : PubMed/NCBI | |
Oh-McGinnis R, Bogutz AB and Lefebvre L: Partial loss of ASCL2 function affects all three layers of the mature placenta and causes intrauterine growth restriction. Dev Biol. 351:277–286. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshida S, Ohbo K, Takakura A, Takebayashi H, Okada T, Abe K and Nabeshima Y: SGN1, a basic helix-loop-helix transcription factor delineates the salivary gland duct cell lineage in mice. Dev Biol. 240:517–530. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rolland T, Tasan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, Yi S, Lemmens I, Fontanillo C, Mosca R, et al: A proteome-scale map of the human interactome network. Cell. 159:1212–1226. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun LX, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, et al: Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell. 9:287–300. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD and Sikic BI: Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res. 65:8679–8689. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown PO and Israel MA: Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci USA. 102:5814–5819. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403. 2006. View Article : Google Scholar : PubMed/NCBI | |
Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, de Tribolet N, Regli L, Wick W, Kouwenhoven MC, et al: Stem cell-related ‘self-renewal’ signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol. 26:3015–3024. 2008. View Article : Google Scholar : PubMed/NCBI | |
French PJ, Swagemakers SM, Nagel JH, Kouwenhoven MC, Brouwer E, van der Spek P, Luider TM, Kros JM, van den Bent MJ and Smitt PA Sillevis: Gene expression profiles associated with treatment response in oligodendrogliomas. Cancer Res. 65:11335–11344. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shai R, Shi T, Kremen TJ, Horvath S, Liau LM, Cloughesy TF, Mischel PS and Nelson SF: Gene expression profiling identifies molecular subtypes of gliomas. Oncogene. 22:4918–4923. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et al: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 98:13790–13795. 2001. View Article : Google Scholar : PubMed/NCBI | |
Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, et al: Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 98:13784–13789. 2001. View Article : Google Scholar : PubMed/NCBI | |
Choi YL, Tsukasaki K, O'Neill MC, Yamada Y, Onimaru Y, Matsumoto K, Ohashi J, Yamashita Y, Tsutsumi S, Kaneda R, et al: A genomic analysis of adult T-cell leukemia. Oncogene. 26:1245–1255. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhan FH, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K, Pineda-Roman M, Tricot G, van Rhee F, Zangari M, et al: A gene expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood. 109:1692–1700. 2006. View Article : Google Scholar : PubMed/NCBI | |
Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R and Califano A: Reverse engineering of regulatory networks in human B cells. Nat Genet. 37:382–390. 2005. View Article : Google Scholar : PubMed/NCBI | |
Frierson HF Jr, El-Naggar AK, Welsh JB, Sapinoso LM, Su AI, Cheng J, Saku T, Moskaluk CA and Hampton GM: Large scale molecular analysis identifies genes with altered expression in salivary adenoid cystic carcinoma. Am J Pathol. 161:1315–1323. 2002. View Article : Google Scholar : PubMed/NCBI | |
Detwiller KY, Fernando NT, Segal NH, Ryeom SW, D'Amore PA and Yoon SS: Analysis of hypoxia-related gene expression in sarcomas and effect of hypoxia on RNA interference of vascular endothelial cell growth factor A. Cancer Res. 65:5881–5889. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, Kim SB, Kim H, Hong SW, Park YN, et al: Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res. 17:1850–1857. 2011. View Article : Google Scholar : PubMed/NCBI | |
LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V and Gerald WL: Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 62:4499–4506. 2002.PubMed/NCBI | |
Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, et al: The mutational landscape of lethal castration-resistant prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, Rosty C, Walter K, Sato N, Parker A, Ashfaq R, et al: Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol. 162:1151–1162. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG and Kovacs G: High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 9:1522009. View Article : Google Scholar : PubMed/NCBI | |
Hao Y, Triadafilopoulos G, Sahbaie P, Young HS, Omary MB and Lowe AW: Gene expression profiling reveals stromal genes expressed in common between Barrett's esophagus and adenocarcinoma. Gastroenterology. 131:925–933. 2006. View Article : Google Scholar : PubMed/NCBI | |
D'Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A, Sera F, Saieva C, Ottini L, Palli D, et al: Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer. 45:461–469. 2009. View Article : Google Scholar | |
Wang Q, Wen YG, Li DP, Xia J, Zhou CZ, Yan DW, Tang HM and Peng ZH: Upregulated INHBA expression is associated with poor survival in gastric cancer. Med Oncol. 29:77–83. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cui JA, Chen YB, Chou WC, Sun L, Chen L, Suo J, Ni Z, Zhang M, Kong X, Hoffman LL, et al: An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res. 39:1197–1207. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dyrskjøt L, Kruhøffer M, Thykjaer T, Marcussen N, Jensen JL, Møller K and Ørntoft TF: Gene expression in the urinary bladder: A common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res. 64:4040–4048. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Langerød A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, Bukholm IK, Kåresen R, Botstein D, Børresen-Dale AL and Jeffrey SS: Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell. 15:2523–2536. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, et al: Transcriptome profile of human colorectal adenomas. Mol Cancer Res. 5:1263–1275. 2007. View Article : Google Scholar : PubMed/NCBI | |
Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL, Federman S, Miller JR III, Allen RE, Singer MI, et al: The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA. 102:6092–6097. 2005. View Article : Google Scholar : PubMed/NCBI | |
Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D and Wang Y: Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 11:7234–7242. 2005. View Article : Google Scholar : PubMed/NCBI | |
Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, Xi Y, Howell P, Metge B, Samant RS, et al: The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. Bmc Med Genomics. 1:132008. View Article : Google Scholar : PubMed/NCBI | |
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et al: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 486:346–352. 2012.PubMed/NCBI | |
Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, et al: Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 14:518–527. 2008. View Article : Google Scholar : PubMed/NCBI | |
Radvanyi L, Singh-Sandhu D, Gallichan S, Lovitt C, Pedyczak A, Mallo G, Gish K, Kwok K, Hanna W, Zubovits J, et al: The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proc Natl Acad Sci USA. 102:11005–11010. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gaedcke J, Grade M, Jung K, Camps J, Jo P, Emons G, Gehoff A, Sax U, Schirmer M, Becker H, et al: Mutated KRAS results in overexpression of DUSP4, a MAP-kinase phosphatase and SMYD3, a histone methyltransferase, in rectal carcinomas. Genes Chrom Cancer. 49:1024–1034. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kaiser S, Park YK, Franklin JL, Halberg RB, Yu M, Jessen WJ, Freudenberg J, Chen X, Haigis K, Jegga AG, et al: Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol. 8:R1312007. View Article : Google Scholar : PubMed/NCBI | |
Hong Y, Downey T, Eu KW, Koh PK and Cheah PY: A ‘metastasis-prone’ signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics. Clin Exp Metastasis. 27:83–90. 2010. View Article : Google Scholar : PubMed/NCBI | |
Skrzypczak M, Goryca K, Rubel T, Paziewska A, Mikula M, Jarosz D, Pachlewski J, Oledzki J and Ostrowski J: Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability. PLoS One. 5:e130912010. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, Riegman P, van der Leest C, van der Spek P, Foekens JA, Hoogsteden HC, et al: Gene expression-based classification of non-small cell lung carcinomas and survival prediction. Plos One. 5:e103122010. View Article : Google Scholar : PubMed/NCBI | |
Brune V, Tiacci E, Pfeil I, Döring C, Eckerle S, van Noesel CJ, Klapper W, Falini B, von Heydebreck A, Metzler D, et al: Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med. 205:2251–2268. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, Chen M, Cheng YJ, Westra WH, Chen CJ, Hildesheim A, et al: Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res. 66:7999–8006. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lu KH, Patterson AP, Wang L, Marquez RT, Atkinson EN, Baggerly KA, Ramoth LR, Rosen DG, Liu J, Hellstrom I, et al: Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin Cancer Res. 10:3291–3300. 2004. View Article : Google Scholar : PubMed/NCBI | |
Skotheim RI, Lind GE, Monni O, Nesland JM, Abeler VM, Fosså SD, Duale N, Brunborg G, Kallioniemi O, Andrews PW and Lothe RA: Differentiation of human embryonal carcinomas in vitro and in vivo reveals expression profiles relevant to normal development. Cancer Res. 65:5588–5598. 2005. View Article : Google Scholar : PubMed/NCBI | |
Arredouani MS, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera JM, Bubley GJ, Li V, Rubin MA, Libermann TA and Sanda MG: Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res. 15:5794–5802. 2009. View Article : Google Scholar : PubMed/NCBI | |
Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, Klein J, Fridman E, Skarda J, Srovnal J, et al: Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer. 7:552007. View Article : Google Scholar : PubMed/NCBI | |
Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, Fellbaum C, Gu X, Joseph M, Pantuck AJ, et al: Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 11:5730–5739. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pyeon D, Newton NA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ, Woodworth CD, Connor JP, Haugen TH, Smith EM, et al: Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res. 67:4605–4619. 2007. View Article : Google Scholar : PubMed/NCBI | |
Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S, Went P, Klein U, Zinzani PL, Baccarani M, et al: Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 117:823–834. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network, . Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI |