Immunoglobulin gene translocations in chronic lymphocytic leukemia: A report of 35 patients and review of the literature
- Authors:
- Marc De Braekeleer
- Corine Tous
- Nadia Guéganic
- Marie‑Josée Le Bris
- Audrey Basinko
- Frédéric Morel
- Nathalie Douet‑Guilbert
-
Affiliations: Faculty of Medicine and Health Sciences, University of Brest, Brest, France, Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France, National Institute of Health and Medical Research (INSERM U1078), Brest, France - Published online on: February 26, 2016 https://doi.org/10.3892/mco.2016.793
- Pages: 682-694
This article is mentioned in:
Abstract
Dores GM, Anderson WF, Curtis RE, Landgren O, Ostroumova E, Bluhm EC, Rabkin CS, Devesa SS and Linet MS: Chronic lymphocytic leukaemia and small lymphocytic lymphoma: Overview of the descriptive epidemiology. Br J Haematol. 139:809–819. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nabhan C and Rosen ST: Chronic lymphocytic leukemia: A clinical review. JAMA. 312:2265–2276. 2014. View Article : Google Scholar : PubMed/NCBI | |
Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J and Vardiman JW: WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues (4th). IARC press. Lyon: 2008. | |
Galton DA, Goldman JM, Wiltshaw E, Catovsky D, Henry K and Goldenberg GJ: Prolymphocytic leukaemia. Br J Haematol. 27:7–23. 1974. View Article : Google Scholar : PubMed/NCBI | |
Kjeldsberg CR and Marty J: Prolymphocytic transformation of chronic lymphocytic leukemia. Cancer. 48:2447–2457. 1981. View Article : Google Scholar : PubMed/NCBI | |
DiGiuseppe JA and Borowitz MJ: Clinical utility of flow cytometry in the chronic lymphoid leukemias. Semin Oncol. 25:6–10. 1998.PubMed/NCBI | |
Armitage JO, Dick FR and Corder MP: Diffuse histiocytic lymphoma complicating chronic lymphocytic leukemia. Cancer. 41:422–427. 1978. View Article : Google Scholar : PubMed/NCBI | |
Parikh SA, Rabe KG, Call TG, Zent CS, Habermann TM, Ding W, Leis JF, Schwager SM, Hanson CA, Macon WR, et al: Diffuse large B-cell lymphoma (Richter syndrome) in patients with chronic lymphocytic leukaemia (CLL): A cohort study of newly diagnosed patients. Br J Haematol. 162:774–782. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN and Pasternack BS: Clinical staging of chronic lymphocytic leukemia. Blood. 46:219–234. 1975.PubMed/NCBI | |
Binet JL, Lepoprier M, Dighiero G, Charron D, D'Athis P, Vaugier G, Beral HM, Natali JC, Raphael M, Nizet B, et al: A clinical staging system for chronic lymphocytic leukemia: Prognostic significance. Cancer. 40:855–864. 1977. View Article : Google Scholar : PubMed/NCBI | |
Van Bockstaele F, Verhasselt B and Philippé J: Prognostic markers in chronic lymphocytic leukemia: A comprehensive review. Blood Rev. 23:25–47. 2009. View Article : Google Scholar : PubMed/NCBI | |
Villamor N, Conde L, Martínez-Trillos A, Cazorla M, Navarro A, Beà S, López C, Colomer D, Pinyol M, Aymerich M, et al: NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia. 27:1100–1106. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jeromin S, Weissmann S, Haferlach C, Dicker F, Bayer K, Grossmann V, Alpermann T, Roller A, Kohlmann A, Haferlach T, et al: SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 28:108–117. 2014. View Article : Google Scholar : PubMed/NCBI | |
Puiggros A, Puigdecanet E, Salido M, Ferrer A, Abella E, Gimeno E, Nonell L, Herranz MJ, Galván AB, Rodríguez-Rivera M, et al: Genomic arrays in chronic lymphocytic leukemia routine clinical practice: Are we ready to substitute conventional cytogenetics and fluorescence in situ hybridization techniques? Leuk Lymphoma. 54:986–995. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matutes E, Owusu-Ankomah K, Morilla R, Marco Garcia J, Houlihan A, Que TH and Catovsky D: The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia. 8:1640–1645. 1994.PubMed/NCBI | |
Cheson BD, Bennett JM, Grever M, Kay N, Keating MJ, O'Brien S and Rai KR: National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: Revised guidelines for diagnosis and treatment. Blood. 87:4990–4997. 1996.PubMed/NCBI | |
Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, Hillmen P, Keating MJ, Montserrat E, Rai KR, et al: International Workshop on Chronic Lymphocytic Leukemia: Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 111:5446–5456. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shaffer LG, McGowan-Jordan J and Schmid M: An International System for Human Cytogenetic Nomenclature. Karger AG, Basel: 2013. | |
Smoley SA, Van Dyke DL, Kay NE, Heerema NA, Dell' Aquila ML, Dal Cin P, Koduru P, Aviram A, Rassenti L, Byrd JC, et al: Standardization of fluorescence in situ hybridization studies on chronic lymphocytic leukemia (CLL) blood and marrow cells by the CLL Research Consortium. Cancer Genet Cytogenet. 203:141–148. 2010. View Article : Google Scholar : PubMed/NCBI | |
De Braekeleer M, Le Bris MJ, Basinko A, Morel F and Douet-Guilbert N: Incidence of chromosomal anomalies detected by interphase fluorescent in situ hybridization in chronic lymphoid leukemia. Int J Hematol Oncol. 4:133–141. 2015. View Article : Google Scholar | |
De Braekeleer M, De Braekeleer E and Douet-Guilbert N: Geographic/ethnic variability of chromosomal and molecular abnormalities in leukemia. Expert Rev Anticancer Ther. 15:1093–1102. 2015. View Article : Google Scholar : PubMed/NCBI | |
De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Férec C and De Braekeleer M: RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol. 7:77–91. 2011. View Article : Google Scholar : PubMed/NCBI | |
De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Basinko A and De Braekeleer M: ETV6 fusion genes in hematological malignancies: A review. Leuk Res. 36:945–961. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schmidt HH, Dyomin VG, Palanisamy N, Itoyama T, Nanjangud G, Pirc-Danoewinata H, Haas OA and Chaganti RS: Deregulation of the carbohydrate (chondroitin 4) sulfotransferase 11 (CHST11) gene in a B-cell chronic lymphocytic leukemia with a t(12;14)(q23;q32). Oncogene. 23:6991–6996. 2004. View Article : Google Scholar : PubMed/NCBI | |
Aamot HV, Bjørnslett M, Delabie J and Heim S: t(14;22)(q32;q11) in non-Hodgkin lymphoma and myeloid leukaemia: Molecular cytogenetic investigations. Br J Haematol. 130:845–851. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kominami R: Role of the transcription factor Bcl11b in development and lymphomagenesis. Proc Jpn Acad Ser B Phys Biol Sci. 88:72–87. 2012. View Article : Google Scholar : PubMed/NCBI | |
Obata M, Kominami R and Mishima Y: BCL11B tumor suppressor inhibits HDM2 expression in a p53-dependent manner. Cell Signal. 24:1047–1052. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dyer MJ, Zani VJ, Lu WZ, O'Byrne A, Mould S, Chapman R, Heward JM, Kayano H, Jadayel D, Matutes E, et al: BCL2 translocations in leukemias of mature B cells. Blood. 83:3682–3688. 1994.PubMed/NCBI | |
Lin P, Jetly R, Lennon PA, Abruzzo LV, Prajapati S and Medeiros LJ: Translocation (18;22)(q21;q11) in B-cell lymphomas: A report of 4 cases and review of the literature. Hum Pathol. 39:1664–1672. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baseggio L, Geay MO, Gazzo S, Berger F, Traverse-Glehen A, Ffrench M, Hayette S, Callet-Bauchu E, Verney A, Morel D, et al: In non-follicular lymphoproliferative disorders, IGH/BCL2-fusion is not restricted to chronic lymphocytic leukaemia. Br J Haematol. 158:489–498. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang G, Banks HE, Sargent RL, Medeiros LJ and Abruzzo LV: Chronic lymphocytic leukemia with t(14;18)(q32;q21). Hum Pathol. 44:598–605. 2013. View Article : Google Scholar : PubMed/NCBI | |
Put N, Meeus P, Chatelain B, Rack K, Boeckx N, Nollet F, Graux C, Van Den Neste E, Janssens A, Madoe V, et al: Translocation t(14;18) is not associated with inferior outcome in chronic lymphocytic leukemia. Leukemia. 23:1201–1204. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sen F, Lai R and Albitar M: Chronic lymphocytic leukemia with t(14;18) and trisomy 12. Arch Pathol Lab Med. 126:1543–1546. 2002.PubMed/NCBI | |
Matutes E, Oscier D, Garcia-Marco J, Ellis J, Copplestone A, Gillingham R, Hamblin T, Lens D, Swansbury GJ and Catovsky D: Trisomy 12 defines a group of CLL with atypical morphology: Correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol. 92:382–388. 1996. View Article : Google Scholar : PubMed/NCBI | |
Cleary ML, Smith SD and Sklar J: Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell. 47:19–28. 1986. View Article : Google Scholar : PubMed/NCBI | |
Hua C, Zorn S, Jensen JP, Coupland RW, Ko HS, Wright JJ and Bakhshi A: Consequences of the t(14;18) chromosomal translocation in follicular lymphoma: Deregulated expression of a chimeric and mutated BCL-2 gene. Oncogene Res. 2:263–275. 1988.PubMed/NCBI | |
Tsujimoto Y and Croce CM: Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA. 83:5214–5218. 1986. View Article : Google Scholar : PubMed/NCBI | |
Oltvai ZN, Milliman CL and Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 74:609–619. 1993. View Article : Google Scholar : PubMed/NCBI | |
Martín-Subero JI, Ibbotson R, Klapper W, Michaux L, Callet-Bauchu E, Berger F, Calasanz MJ, De Wolf-Peeters C, Dyer MJ, Felman P, et al: A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia. 21:1532–1544. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huh YO, Abruzzo LV, Rassidakis GZ, Parry-Jones N, Schlette E, Brito-Bapabulle V, Matutes E, Wotherspoon A, Keating MJ, Medeiros LJ, et al: The t(14;19)(q32;q13)-positive small B-cell leukaemia: A clinicopathologic and cytogenetic study of seven cases. Br J Haematol. 136:220–228. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huh YO, Schweighofer CD, Ketterling RP, Knudson RA, Vega F, Kim JE, Luthra R, Keating MJ, Medeiros LJ and Abruzzo LV: Chronic lymphocytic leukemia with t(14;19)(q32;q13) is characterized by atypical morphologic and immunophenotypic features and distinctive genetic features. Am J Clin Pathol. 135:686–696. 2011. View Article : Google Scholar : PubMed/NCBI | |
Michaux L, Mecucci C, Stul M, Wlodarska I, Hernandez JM, Meeus P, Michaux JL, Scheiff JM, Noël H, Louwagie A, et al: BCL3 rearrangement and t(14;19)(q32;q13) in lymphoproliferative disorders. Genes Chromosomes Cancer. 15:38–47. 1996. View Article : Google Scholar : PubMed/NCBI | |
Michaux L, Dierlamm J, Wlodarska I, Bours V, Van den Berghe H and Hagemeijer A: t(14;19)/BCL3 rearrangements in lymphoproliferative disorders: A review of 23 cases. Cancer Genet Cytogenet. 94:36–43. 1997. View Article : Google Scholar : PubMed/NCBI | |
McKeithan TW, Takimoto GS, Ohno H, Bjorling VS, Morgan R, Hecht BK, Dubé I, Sandberg AA and Rowley JD: BCL3 rearrangements and t(14;19) in chronic lymphocytic leukemia and other B-cell malignancies: A molecular and cytogenetic study. Genes Chromosomes Cancer. 20:64–72. 1997. View Article : Google Scholar : PubMed/NCBI | |
Chapiro E, Radford-Weiss I, Bastard C, Luquet I, Lefebvre C, Callet-Bauchu E, Leroux D, Talmant P, Mozziconacci MJ, Mugneret F, et al: The most frequent t(14;19)(q32;q13)-positive B-cell malignancy corresponds to an aggressive subgroup of atypical chronic lymphocytic leukemia. Leukemia. 22:2123–2127. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schweighofer CD, Huh YO, Luthra R, Sargent RL, Ketterling RP, Knudson RA, Barron LL, Medeiros LJ, Keating MJ and Abruzzo LV: The B cell antigen receptor in atypical chronic lymphocytic leukemia with t(14;19)(q32;q13) demonstrates remarkable stereotypy. Int J Cancer. 128:2759–2764. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shin SY, Park CJ, Lee KH, Huh J, Chi HS and Seo EJ: An illustrative case of t(14;19)/BCL3 rearrangement as a karyotypic evolution of chronic lymphocytic leukemia. Ann Hematol. 92:1717–1719. 2013. View Article : Google Scholar : PubMed/NCBI | |
Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, Scielzo C, Laoutaris N, Karlsson K, Baran-Marzsak F, Tsaftaris A, et al: Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: Implications for the role of antigen selection in leukemogenesis. Blood. 111:1524–1533. 2008. View Article : Google Scholar : PubMed/NCBI | |
McKeithan TW, Ohno H and Diaz MO: Identification of a transcriptional unit adjacent to the breakpoint in the 14;19 translocation of chronic lymphocytic leukemia. Genes Chromosomes Cancer. 1:247–255. 1990. View Article : Google Scholar : PubMed/NCBI | |
Ohno H, Takimoto G and McKeithan TW: The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell. 60:991–997. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bours V, Franzoso G, Azarenko V, Park S, Kanno T, Brown K and Siebenlist U: The oncoprotein Bcl-3 directly transactivates through kappa B motifs via association with DNA-binding p50B homodimers. Cell. 72:729–739. 1993. View Article : Google Scholar : PubMed/NCBI | |
Dechend R, Hirano F, Lehmann K, Heissmeyer V, Ansieau S, Wulczyn FG, Scheidereit C and Leutz A: The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators. Oncogene. 18:3316–3323. 1999. View Article : Google Scholar : PubMed/NCBI | |
Orlowski RZ and Baldwin AS Jr: NF-kappaB as a therapeutic target in cancer. Trends Mol Med. 8:385–389. 2002. View Article : Google Scholar : PubMed/NCBI | |
Baldwin AS: Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 107:241–246. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kashatus D, Cogswell P and Baldwin AS: Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev. 20:225–235. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huret JL: t(11;14)(q13;q32). Atlas Genet Cytogenet Oncol Haematol. 2:129–131. 1998. | |
Cuneo A, de Angeli C, Roberti MG, Piva N, Bigoni R, Gandini D, Rigolin GM, Moretti S, Cavazzini P, del Senno L, et al: Richter's syndrome in a case of atypical chronic lymphocytic leukaemia with the t(11;14)(q13;q32): Role for a p53 exon 7 gene mutation. Br J Haematol. 92:375–381. 1996. View Article : Google Scholar : PubMed/NCBI | |
Späth-Schwalbe E, Flath B, Kaufmann O, Thiel G, Brinckmann R, Dietel M and Possinger K: An unusual case of leukemic non-Hodgkin's lymphoma with blastic transformation. Ann Hematol. 79:217–221. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cuneo A, Balboni M, Piva N, Rigolin GM, Roberti MG, Mejak C, Moretti S, Bigoni R, Balsamo R, Cavazzini P, et al: Atypical chronic lymphocytic leukaemia with t(11;14)(q13;q32): Karyotype evolution and prolymphocytic transformation. Br J Haematol. 90:409–416. 1995. View Article : Google Scholar : PubMed/NCBI | |
De Angeli C, Gandini D, Cuneo A, Moretti S, Bigoni R, Roberti MG, Bardi A, Castoldi GL and del Senno L: BCL-1 rearrangements and p53 mutations in atypical chronic lymphocytic leukemia with t(11;14)(q13;q32). Haematologica. 85:913–921. 2000.PubMed/NCBI | |
Cuneo A, Bigoni R, Negrini M, Bullrich F, Veronese ML, Roberti MG, Bardi A, Rigolin GM, Cavazzini P, Croce CM, et al: Cytogenetic and interphase cytogenetic characterization of atypical chronic lymphocytic leukemia carrying BCL1 translocation. Cancer Res. 57:1144–1150. 1997.PubMed/NCBI | |
Komatsu H, Yoshida K, Seto M, Iida S, Aikawa T, Ueda R and Mikuni C: Overexpression of PRAD1 in a mantle zone lymphoma patient with a t(11;22)(q13;q11) translocation. Br J Haematol. 85:427–429. 1993. View Article : Google Scholar : PubMed/NCBI | |
Nishida Y, Takeuchi K, Tsuda K, Ugai T, Sugihara H, Yamakura M, Takeuchi M and Matsue K: Acquisition of t(11;14) in a patient with chronic lymphocytic leukemia carrying both t(14;19)(q32;q13.1) and +12. Eur J Haematol. 91:179–182. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matutes E, Carrara P, Coignet L, Brito-Babapulle V, Villamor N, Wotherspoon A and Catovsky D: FISH analysis for BCL-1 rearrangements and trisomy 12 helps the diagnosis of atypical B cell leukaemias. Leukemia. 13:1721–1726. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rimokh R, Berger F, Bastard C, Klein B, French M, Archimbaud E, Rouault JP, Lucia Santa B, Duret L, Vuillaume M, et al: Rearrangement of CCND1 (BCL1/PRAD1) 3′ untranslated region in mantle-cell lymphomas and t(11q13)-associated leukemias. Blood. 83:3689–3696. 1994.PubMed/NCBI | |
Sherr CJ: The Pezcoller lecture: Cancer cell cycles revisited. Cancer Res. 60:3689–3695. 2000.PubMed/NCBI | |
Bates S, Bonetta L, MacAllan D, Parry D, Holder A, Dickson C and Peters G: CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene. 9:71–79. 1994.PubMed/NCBI | |
Reddy K, Satyadev R, Bouman D, Hibbard MK, Lu G and Paolo R: Burkitt t(8;14)(q24;q32) and cryptic deletion in a CLL patient: Report of a case and review of literature. Cancer Genet Cytogenet. 166:12–21. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huh YO, Lin KI, Vega F, Schlette E, Yin CC, Keating MJ, Luthra R, Medeiros LJ and Abruzzo LV: MYC translocation in chronic lymphocytic leukaemia is associated with increased prolymphocytes and a poor prognosis. Br J Haematol. 142:36–44. 2008. View Article : Google Scholar : PubMed/NCBI | |
Put N, Van Roosbroeck K, Konings P, Meeus P, Brusselmans C, Rack K, Gervais C, Nguyen-Khac F, Chapiro E, Radford-Weiss I, et al: BCGHo and the GFCH: Chronic lymphocytic leukemia and prolymphocytic leukemia with MYC translocations: A subgroup with an aggressive disease course. Ann Hematol. 91:863–873. 2012. View Article : Google Scholar : PubMed/NCBI | |
Asirvatham JR, Brody J, Vora R, Kolitz JE, Fields SZ, Sreekantaiah C and Zhang X: Prognostic significance of isolated t(8:14) in chronic lymphocytic leukemia. Leuk Lymphoma. 55:685–688. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S and Leder P: Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA. 79:7837–7841. 1982. View Article : Google Scholar : PubMed/NCBI | |
Kelly K and Siebenlist U: The role of c-myc in the proliferation of normal and neoplastic cells. J Clin Immunol. 5:65–77. 1985. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ and Ren B: A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA. 100:8164–8169. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dang CV, Resar LM, Emison E, Kim S, Li Q, Prescott JE, Wonsey D and Zeller K: Function of the c-Myc oncogenic transcription factor. Exp Cell Res. 253:63–77. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hoffman B and Liebermann DA: Apoptotic signaling by c-MYC. Oncogene. 27:6462–6472. 2008. View Article : Google Scholar : PubMed/NCBI | |
Satterwhite E, Sonoki T, Willis TG, Harder L, Nowak R, Arriola EL, Liu H, Price HP, Gesk S, Steinemann D, et al: The BCL11 gene family: Involvement of BCL11A in lymphoid malignancies. Blood. 98:3413–3420. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yin CC, Lin KI, Ketterling RP, Knudson RA, Medeiros LJ, Barron LL, Huh YO, Luthra R, Keating MJ and Abruzzo LV: Chronic lymphocytic leukemia with t(2;14)(p16;q32) involves the BCL11A and IgH genes and is associated with atypical morphologic features and unmutated IgVH genes. Am J Clin Pathol. 131:663–670. 2009. View Article : Google Scholar : PubMed/NCBI | |
Küppers R, Sonoki T, Satterwhite E, Gesk S, Harder L, Oscier DG, Tucker PW, Dyer MJS and Siebert R: Lack of somatic hypermutation of IG V(H) genes in lymphoid malignancies with t(2;14)(p13;q32) translocation involving the BCL11A gene. Leukemia. 16:937–939. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Keller JR, Ortiz M, Tessarollo L, Rachel RA, Nakamura T, Jenkins NA and Copeland NG: Bcl11a is essential for normal lymphoid development. Nat Immunol. 4:525–532. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pulford K, Banham AH, Lyne L, Jones M, Ippolito GC, Liu H, Tucker PW, Roncador G, Lucas E, Ashe S, et al: The BCL11AXL transcription factor: Its distribution in normal and malignant tissues and use as a marker for plasmacytoid dendritic cells. Leukemia. 20:1439–1441. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rouhigharabaei L, Ferreiro JF, Put N, Michaux L, Tousseyn T, Lefebvre C, Gardiner A, De Kelver W, Demuynck H, Verschuere J, et al: BMI1, the polycomb-group gene, is recurrently targeted by genomic rearrangements in progressive B-cell leukemia/lymphoma. Genes Chromosomes Cancer. 52:928–944. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Cao R, Wang M, Myers MP, Zhang Y and Xu RM: Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase complex. J Biol Chem. 281:20643–20649. 2006. View Article : Google Scholar : PubMed/NCBI | |
Raaphorst FM, Otte AP and Meijer CJ: Polycomb-group genes as regulators of mammalian lymphopoiesis. Trends Immunol. 22:682–690. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ringrose L and Paro R: Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development. 134:223–232. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sauvageau M and Sauvageau G: Polycomb group proteins: Multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell. 7:299–313. 2010. View Article : Google Scholar : PubMed/NCBI | |
Siddique HR and Saleem M: Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: Preclinical and clinical evidences. Stem Cells. 30:372–378. 2012. View Article : Google Scholar : PubMed/NCBI | |
Silva J, García JM, Peña C, García V, Domínguez G, Suárez D, Camacho FI, Espinosa R, Provencio M, España P, et al: Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas. Clin Cancer Res. 12:6929–6936. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A and van Lohuizen M: Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13:2678–2690. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bacher U, Haferlach T, Schnittger S, Weiss T, Burkhard O, Bechtel B, Kern W and Haferlach C: Detection of a t(4;14)(p16;q32) in two cases of lymphoma showing both the immunophenotype of chronic lymphocytic leukemia. Cancer Genet Cytogenet. 200:170–174. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cerny J, Yu H and Miron PM: Novel FGFR3 rearrangement t(4;22)(p16;q11.2) in a patient with chronic lymphocytic leukemia/small lymphocytic lymphoma. Ann Hematol. 92:1433–1435. 2013. View Article : Google Scholar : PubMed/NCBI | |
Geller MD, Pei Y, Spurgeon SE, Durum C and Leeborg NJ: Chronic lymphocytic leukemia with a FGFR3 translocation: case report and literature review of an uncommon cytogenetic event. Cancer Genet. 207:340–343. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kalff A and Spencer A: The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: Prognostic implications and current clinical strategies. Blood Cancer J. 2:e892012. View Article : Google Scholar : PubMed/NCBI | |
Chesi M, Nardini E, Lim RSC, Smith KD, Kuehl WM and Bergsagel PL: The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood. 92:3025–3034. 1998.PubMed/NCBI | |
Chesi M, Nardini E, Brents LA, Schröck E, Ried T, Kuehl WM and Bergsagel PL: Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet. 16:260–264. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lauring J, Abukhdeir AM, Konishi H, Garay JP, Gustin JP, Wang Q, Arceci RJ, Matsui W and Park BH: The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood. 111:856–864. 2008. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Garcia E, Popovic R, Min DJ, Sweet SM, Thomas PM, Zamdborg L, Heffner A, Will C, Lamy L, Staudt LM, et al: The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood. 117:211–220. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hart KC, Robertson SC and Donoghue DJ: Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol Biol Cell. 12:931–942. 2001. View Article : Google Scholar : PubMed/NCBI | |
L'Hôte CG and Knowles MA: Cell responses to FGFR3 signalling: Growth, differentiation and apoptosis. Exp Cell Res. 304:417–431. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vahdati M, Graafland H and Emberger JM: Karyotype analysis of B-lymphocytes transformed by Epstein-Barr virus in 21 patients with B cell chronic lymphocytic leukemia. Hum Genet. 63:327–331. 1983. View Article : Google Scholar : PubMed/NCBI | |
Oscier DG, Gardiner A and Mould S: Structural abnormalities of chromosome 7q in chronic lymphoproliferative disorders. Cancer Genet Cytogenet. 92:24–27. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fink SR, Smoley SA, Stockero KJ, Paternoster SF, Thorland EC, Van Dyke DL, Shanafelt TD, Zent CS, Call TG, Kay NE, et al: Loss of TP53 is due to rearrangements involving chromosome region 17p10 approximately p12 in chronic lymphocytic leukemia. Cancer Genet Cytogenet. 167:177–181. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hayette S, Tigaud I, Callet-Bauchu E, Ffrench M, Gazzo S, Wahbi K, Callanan M, Felman P, Dumontet C, Magaud JP, et al: In B-cell chronic lymphocytic leukemias, 7q21 translocations lead to overexpression of the CDK6 gene. Blood. 102:1549–1550. 2003. View Article : Google Scholar : PubMed/NCBI | |
Douet-Guilbert N, Tous C, Le Flahec G, Bovo C, Le Bris MJ, Basinko A, Morel F and De Braekeleer M: Translocation t(2;7)(p11;q21) associated with the CDK6/IGK rearrangement is a rare but recurrent abnormality in B-cell lymphoproliferative malignancies. Cancer Genet. 207:83–86. 2014. View Article : Google Scholar : PubMed/NCBI | |
Corcoran MM, Mould SJ, Orchard JA, Ibbotson RE, Chapman RM, Boright AP, Platt C, Tsui LC, Scherer SW and Oscier DG: Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations. Oncogene. 18:6271–6277. 1999. View Article : Google Scholar : PubMed/NCBI | |
Brito-Babapulle V, Gruszka-Westwood AM, Platt G, Andersen CL, Elnenaei MO, Matutes E, Wotherspoon AC, Weston-Smith SG and Catovsky D: Translocation t(2;7)(p12;q21-22) with dysregulation of the CDK6 gene mapping to 7q21-22 in a non-Hodgkin's lymphoma with leukemia. Haematologica. 87:357–362. 2002.PubMed/NCBI | |
Ruas M, Gregory F, Jones R, Poolman R, Starborg M, Rowe J, Brookes S and Peters G: CDK4 and CDK6 delay senescence by kinase-dependent and p16INK4a-independent mechanisms. Mol Cell Biol. 27:4273–4282. 2007. View Article : Google Scholar : PubMed/NCBI | |
Handschick K, Beuerlein K, Jurida L, Bartkuhn M, Müller H, Soelch J, Weber A, Dittrich-Breiholz O, Schneider H, Scharfe M, et al: Cyclin-dependent kinase 6 is a chromatin-bound cofactor for NF-κB-dependent gene expression. Mol Cell. 53:193–208. 2014. View Article : Google Scholar : PubMed/NCBI | |
Grossel MJ and Hinds PW: From cell cycle to differentiation: An expanding role for cdk6. Cell Cycle. 5:266–270. 2006. View Article : Google Scholar : PubMed/NCBI | |
Matushansky I, Radparvar F and Skoultchi AI: CDK6 blocks differentiation: Coupling cell proliferation to the block to differentiation in leukemic cells. Oncogene. 22:4143–4149. 2003. View Article : Google Scholar : PubMed/NCBI | |
Offit K, Parsa NZ, Filippa D, Jhanwar SC and Chaganti RS: t(9;14)(p13;q32) denotes a subset of low-grade non-Hodgkin's lymphoma with plasmacytoid differentiation. Blood. 80:2594–2599. 1992.PubMed/NCBI | |
Finn WG, Kay NE, Kroft SH, Church S and Peterson LC: Secondary abnormalities of chromosome 6q in B-cell chronic lymphocytic leukemia: A sequential study of karyotypic instability in 51 patients. Am J Hematol. 59:223–229. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dicker F, Schnittger S, Haferlach T, Kern W and Schoch C: Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: A study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood. 108:3152–3160. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dascalescu CM, Péoc'h M, Callanan M, Jacob MC, Sotto MF, Gressin R, Sotto JJ and Leroux D: Deletion 7q in B-cell low-grade lymphoid malignancies: A cytogenetic/fluorescence in situ hybridization and immunopathologic study. Cancer Genet Cytogenet. 109:21–28. 1999. View Article : Google Scholar : PubMed/NCBI | |
Busslinger M, Klix N, Pfeffer P, Graninger PG and Kozmik Z: Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA. 93:6129–6134. 1996. View Article : Google Scholar : PubMed/NCBI | |
Iida S, Rao PH, Nallasivam P, Hibshoosh H, Butler M, Louie DC, Dyomin V, Ohno H, Chaganti RSK and Dalla-Favera R: The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood. 88:4110–4117. 1996.PubMed/NCBI | |
Ohno H, Ueda C and Akasaka T: The t(9;14)(p13;q32) translocation in B-cell non-Hodgkin's lymphoma. Leuk Lymphoma. 36:435–445. 2000. View Article : Google Scholar : PubMed/NCBI | |
Barberis A, Widenhorn K, Vitelli L and Busslinger M: A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation. Genes Dev. 4:849–859. 1990. View Article : Google Scholar : PubMed/NCBI | |
Eberhard D, Jiménez G, Heavey B and Busslinger M: Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 19:2292–2303. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sonoki T, Harder L, Horsman DE, Karran L, Taniguchi I, Willis TG, Gesk S, Steinemann D, Zucca E, Schlegelberger B, et al: Cyclin D3 is a target gene of t(6;14)(p21.1;q32.3) of mature B-cell malignancies. Blood. 98:2837–2844. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wlodarska I, Dierickx D, Vanhentenrijk V, Van Roosbroeck K, Pospísilová H, Minnei F, Verhoef G, Thomas J, Vandenberghe P and De Wolf-Peeters C: Translocations targeting CCND2, CCND3, and MYCN do occur in t(11;14)-negative mantle cell lymphomas. Blood. 111:5683–5690. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cavazzini F, Hernandez JA, Gozzetti A, Rossi Russo A, De Angeli C, Tiseo R, Bardi A, Tammiso E, Crupi R, Lenoci MP, et al: Chromosome 14q32 translocations involving the immunoglobulin heavy chain locus in chronic lymphocytic leukaemia identify a disease subset with poor prognosis. Br J Haematol. 142:529–537. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shaughnessy J Jr, Gabrea A, Qi Y, Brents L, Zhan F, Tian E, Sawyer J, Barlogie B, Bergsagel PL and Kuehl M: Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood. 98:217–223. 2001. View Article : Google Scholar : PubMed/NCBI | |
Motokura T, Keyomarsi K, Kronenberg HM and Arnold A: Cloning and characterization of human cyclin D3, a cDNA closely related in sequence to the PRAD1/cyclin D1 proto-oncogene. J Biol Chem. 267:20412–20415. 1992.PubMed/NCBI | |
Gumina MR, Xu C and Chiles TC: Cyclin D3 is dispensable for human diffuse large B-cell lymphoma survival and growth: Evidence for redundancy with cyclin E. Cell Cycle. 9:820–828. 2010. View Article : Google Scholar : PubMed/NCBI | |
Decker T, Schneller F, Hipp S, Miething C, Jahn T, Duyster J and Peschel C: Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27. Leukemia. 16:327–334. 2002. View Article : Google Scholar : PubMed/NCBI | |
Willis TG and Dyer MJS: The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 96:808–822. 2000.PubMed/NCBI | |
Küppers R and Dalla-Favera R: Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene. 20:5580–5594. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nowakowski GS, Dewald GW, Hoyer JD, Paternoster SF, Stockero KJ, Fink SR, Smoley SA, Remstein ED, Phyliky RL, Call TG, et al: Interphase fluorescence in situ hybridization with an IGH probe is important in the evaluation of patients with a clinical diagnosis of chronic lymphocytic leukaemia. Br J Haematol. 130:36–42. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cavazzini F, Rizzotto L, Sofritti O, Daghia G, Cibien F, Martinelli S, Ciccone M, Saccenti E, Dabusti M, Elkareem AA, et al: Clonal evolution including 14q32/IGH translocations in chronic lymphocytic leukemia: Analysis of clinicobiologic correlations in 105 patients. Leuk Lymphoma. 53:83–88. 2012. View Article : Google Scholar : PubMed/NCBI | |
Davids MS, Vartanov A, Werner L, Neuberg D, Dal Cin P and Brown JR: Controversial fluorescence in situ hybridization cytogenetic abnormalities in chronic lymphocytic leukaemia: New insights from a large cohort. Br J Haematol. 170:694–703. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gerrie AS, Bruyere H, Chan MJ, Dalal CB, Ramadan KM, Huang SJ, Toze CL and Gillan TL: Immunoglobulin heavy chain (IGH@) translocations negatively impact treatment-free survival for chronic lymphocytic leukemia patients who have an isolated deletion 13q abnormality. Cancer Genet. 205:523–527. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gerrie AS, Huang SJ, Bruyere H, Dalal C, Hrynchak M, Karsan A, Ramadan KM, Smith AC, Tyson C, Toze CL, et al: Population-based characterization of the genetic landscape of chronic lymphocytic leukemia patients referred for cytogenetic testing in British Columbia, Canada: The role of provincial laboratory standardization. Cancer Genet. 207:316–325. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu G, Kong Y and Yue C: Genetic and immunophenotypic profile of IGH@ rearrangement detected by fluorescence in situ hybridization in 149 cases of B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 196:56–63. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shanafelt TD, Witzig TE, Fink SR, Jenkins RB, Paternoster SF, Smoley SA, Stockero KJ, Nast DM, Flynn HC, Tschumper RC, et al: Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol. 24:4634–4641. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aoun P, Blair HE, Smith LM, Dave BJ, Lynch J, Weisenburger DD, Pavletic SZ and Sanger WG: Fluorescence in situ hybridization detection of cytogenetic abnormalities in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk Lymphoma. 45:1595–1603. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nelson BP, Gupta R, Dewald GW, Paternoster SF, Rosen ST and Peterson LC: Chronic lymphocytic leukemia FISH panel: Impact on diagnosis. Am J Clin Pathol. 128:323–332. 2007. View Article : Google Scholar : PubMed/NCBI | |
Flanagan MB, Sathanoori M, Surti U, Soma L and Swerdlow SH: Cytogenetic abnormalities detected by fluorescence in situ hybridization on paraffin-embedded chronic lymphocytic leukemia/small lymphocytic lymphoma lymphoid tissue biopsy specimens. Am J Clin Pathol. 130:620–627. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jenderny J, Goldmann C, Thede R, Ebrecht M and Korioth F: Detection of clonal aberrations by cytogenetic analysis after different culture methods and by FISH in 129 patients with chronic lymphocytic leukemia. Cytogenet Genome Res. 144:163–168. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haferlach C, Dicker F, Schnittger S, Kern W and Haferlach T: Comprehensive genetic characterization of CLL: A study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 21:2442–2451. 2007. View Article : Google Scholar : PubMed/NCBI | |
Alhourani E, Rincic M, Othman MA, Pohle B, Schlie C, Glaser A and Liehr T: Comprehensive chronic lymphocytic leukemia diagnostics by combined multiplex ligation dependent probe amplification (MLPA) and interphase fluorescence in situ hybridization (iFISH). Mol Cytogenet. 7:792014. View Article : Google Scholar : PubMed/NCBI | |
Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, Döhner K, Bentz M and Lichter P: Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 343:1910–1916. 2000. View Article : Google Scholar : PubMed/NCBI | |
Berkova A, Pavlistova L, Babicka L, Houskova L, Tajtlova J, Balazi P, Cmunt E, Schwarz J, Karban J, Trneny M, et al: Combined molecular biological and molecular cytogenetic analysis of genomic changes in 146 patients with B-cell chronic lymphocytic leukemia. Neoplasma. 55:400–408. 2008.PubMed/NCBI | |
Amare PS, Gadage V, Jain H, Nikalje S, Manju S, Mittal N, Gujral S and Nair R: Clinico-pathological impact of cytogenetic subgroups in B-cell chronic lymphocytic leukemia: Experience from India. Indian J Cancer. 50:261–267. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, Kim Y, Yahng SA, Shin SH, Lee SE, Cho BS, Eom KS, Kim YJ, Lee S, Kim HJ, et al: Validation of Western common recurrent chromosomal aberrations in Korean chronic lymphocytic leukaemia patients with very low incidence. Hematol Oncol. 32:169–177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Li JY, Pan JL, Qiu HR, Shen YF, Li L, Wu YF and Xue YQ: Interphase fluorescence in situ hybridization detection of cytogenetic abnormalities in B-cell chronic lymphocytic leukemia. Int J Hematol. 85:430–436. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qiu HX, Xu W, Cao XS, Zhou M, Shen YF, Xu YL, Sun XM, Liu Q, Wang R, Qiu HR, et al: Cytogenetic characterisation in Chinese patients with chronic lymphocytic leukemia: A prospective, multicenter study on 143 cases analysed with interphase fluorescence in situ hybridisation. Leuk Lymphoma. 49:1887–1892. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang DM, Miao KR, Fan L, Qiu HR, Fang C, Zhu DX, Qiu HX, Xu W and Li JY: Intermediate prognosis of 6q deletion in chronic lymphocytic leukemia. Leuk Lymphoma. 52:230–237. 2011. View Article : Google Scholar : PubMed/NCBI |