Progress in the research on the mechanism of bone metastasis in lung cancer (Review)
- Authors:
- Qinqin Luo
- Zhenye Xu
- Lifang Wang
- Mingyu Ruan
- Guiyu Jin
-
Affiliations: Department of Postgraduates, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China, Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P.R. China - Published online on: June 2, 2016 https://doi.org/10.3892/mco.2016.917
- Pages: 227-235
-
Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Salomaa ER and Walta M: The prognosis of lung cancer continues to be poor-treatment outcome within the hospital district of Southwest Finland in 2004 to 2011. Duodecim. 131:69–75. 2015.(In Finnish). PubMed/NCBI | |
GLOBOCAN: Estimated cancer incidence, mortality and prevalence worldwide in 2012. IARC. 2014. | |
Hirsh V, Major PP, Lipton A, Cook RJ, Langer CJ, Smith MR, Brown JE and Coleman RE: Zoledronic acid and survival in patients with metastatic bone disease from lung cancer and elevated markers of osteoclast activity. J Thorac Oncol. 3:228–236. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mundy GR: Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2:584–593. 2002. View Article : Google Scholar : PubMed/NCBI | |
Taubenberger AV: In vitro microenvironments to study breast cancer bone colonisation. Adv Drug Deliv Rev. 79–80:135–144. 2014. View Article : Google Scholar | |
Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R and Abbruzzese JL: Metastatic patterns in adenocarcinoma. Cancer. 106:1624–1633. 2006. View Article : Google Scholar : PubMed/NCBI | |
Paget S: The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8:98–101. 1989.PubMed/NCBI | |
Uy HL, Mundy GR, Boyce BF, Story BM, Dunstan CR, Yin JJ, Roodman GD and Guise TA: Tumor necrosis factor enhances parathyroid hormone-related protein-induced hypercalcemia and bone resorption without inhibiting bone formation in vivo. Cancer Res. 57:3194–3199. 1997.PubMed/NCBI | |
Miki T, Yano S, Hanibuchi M, Kanematsu T, Muguruma H and Sone S: Parathyroid hormone-related protein (PTHrP) is responsible for production of bone metastasis, but not visceral metastasis, by human small cell lung cancer SBC-5 cells in natural killer cell-depleted SCID mice. Int J Cancer. 108:511–515. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cai Z, Chen Q, Chen J, Lu Y, Xiao G, Wu Z, Zhou Q and Zhang J: Monocyte chemotactic protein 1 promotes lung cancer-induced bone resorptive lesions in vivo. Neoplasia. 11:228–236. 2009. View Article : Google Scholar : PubMed/NCBI | |
Han JH, Choi SJ, Kurihara N, Koide M, Oba Y and Roodman GD: Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood. 97:3349–3353. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bogenrieder T and Herlyn M: Axis of evil: Molecular mechanisms of cancer metastasis. Oncogene. 22:6524–6536. 2003. View Article : Google Scholar : PubMed/NCBI | |
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vescovi AL, Galli R and Reynolds BA: Brain tumour stem cells. Nat Rev Cancer. 6:425–436. 2006. View Article : Google Scholar : PubMed/NCBI | |
Driessens G, Beck B, Caauwe A, Simons BD and Blanpain C: Defining the mode of tumour growth by clonal analysis. Nature. 488:527–530. 2012. View Article : Google Scholar : PubMed/NCBI | |
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C and De Maria R: Identification and expansion of human colon-cancer-initiating cells. Nature. 445:111–115. 2007. View Article : Google Scholar : PubMed/NCBI | |
Todaro M, Perez Alea M, Scopelliti A, Medema JP and Stassi G: IL-4 mediated drug resistance in colon cancer stem cells. Cell Cycle. 7:309–313. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ and Heeschen C: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 1:313–323. 2007. View Article : Google Scholar : PubMed/NCBI | |
Collins AT and Maitland NJ: Prostate cancer stem cells. Eur J Cancer. 42:1213–1218. 2006. View Article : Google Scholar : PubMed/NCBI | |
International Stem Cell Initiative. Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, et al: Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol. 25:803–816. 2007. View Article : Google Scholar : PubMed/NCBI | |
Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, Sesterhenn IA, McLeod DG, Srivastava S and Rhim JS: Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 67:3153–3161. 2007. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI | |
Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De Maria R: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15:504–514. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dean M, Fojo T and Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J and Song E: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI | |
Levina V, Marrangoni AM, DeMarco R, Gorelik E and Lokshin AE: Drug-selected human lung cancer stem cells: Cytokine network, tumorigenic and metastatic properties. PLoS One. 3:e30772008. View Article : Google Scholar : PubMed/NCBI | |
Yang J and Weinberg RA: Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S and Puisieux A: Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 3:e28882008. View Article : Google Scholar : PubMed/NCBI | |
Chaffer CL and Weinberg RA: A perspective on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI | |
Christiansen JJ and Rajasekaran AK: Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66:8319–8326. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lacroix M: Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer. 13:1033–1067. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pantel K, Brakenhoff RH and Brandt B: Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 8:329–340. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mego M, Mani SA and Cristofanilli M: Molecular mechanisms of metastasis in breast cancer-clinical applications. Nat Rev Clin Oncol. 7:693–701. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F and Dive C: Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol. 178:989–996. 2011. View Article : Google Scholar : PubMed/NCBI | |
Perl AK, Wilgenbus P, Dahl U, Semb H and Christofori G: A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 392:190–193. 1998. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Zhang W, Jiang LY, Qin WX and Wang X: Reduced E-Cadherin expression is a prognostic biomarker of non-small cell lung cancer: A meta-analysis based on 2395 subjects. Int J Clin Exp Med. 7:4352–4356. 2014.PubMed/NCBI | |
Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC and Wu KJ: Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 10:295–305. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Tilló E, Lázaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P and Postigo A: ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin remodeling protein BRG1. Oncogene. 29:3490–3500. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ko H, Jeon H, Lee D, Choi HK, Kang KS and Choi KC: Sanguiin H6 suppresses TGF-β induction of the epithelial-mesenchymal transition and inhibits migration and invasion in A549 lung cancer. Bioorg Med Chem Lett. 25:5508–5513. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Li L, Huang Q, Xu W, Cai X, Zhang J, Yan W, Song D, Liu T, Zhou W, et al: Wnt signaling through Snail1 and Zeb1 regulates bone metastasis in lung cancer. Am J Cancer Res. 5:748–755. 2015.PubMed/NCBI | |
Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014. View Article : Google Scholar : PubMed/NCBI | |
Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Cell. 7:513–520. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lewis CE and Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66:605–612. 2006. View Article : Google Scholar : PubMed/NCBI | |
Coussens LM, Fingleton B and Matrisian LM: Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science. 295:2387–2392. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hu T and Lu YR: BCYRN1, a c-MYC-activated long non-coding RNA, regulates cell metastasis of non-small-cell lung Cancer. Cancer Cell Int. 15:362015. View Article : Google Scholar : PubMed/NCBI | |
Hsu CP, Shen GH and Ko JL: Matrix metalloproteinase-13 expression is associated with bone marrow microinvolvement and prognosis in non-small cell lung cancer. Lung Cancer. 52:349–357. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhu Y, Zhao M, Wu C, Zhang P, Tang L, Zhang H, Chen X, Yang Y and Liu G: miRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targeting integrin β1 and matrix metalloproteinase2 (MMP2). PloS One. 8:e701922013. View Article : Google Scholar : PubMed/NCBI | |
Papetti M and Herman IM: Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 282:C947–C970. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dimova I, Popivanov G and Djonov V: Angiogenesis in cancer-general pathways and their therapeutic implications. J BUON. 19:15–21. 2014.PubMed/NCBI | |
Weis SM and Cheresh DA: αV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med. 1:a0064782011. View Article : Google Scholar : PubMed/NCBI | |
Young R, Pailler E, Billiot F, Drusch F, Barthelemy A, Oulhen M, Besse B, Soria JC, Farace F and Vielh P: Circulating tumor cells in lung cancer. Acta Cytol. 56:655–660. 2012. View Article : Google Scholar : PubMed/NCBI | |
O'Flaherty JD, Gray S, Richard D, Fennell D, O'Leary JJ, Blackhall FH and O'Byrne KJ: Circulating tumour cells, their role in metastasis and their clinical utility in lung cancer. Lung Cancer. 76:19–25. 2012. View Article : Google Scholar : PubMed/NCBI | |
Parkinson DR, Dracopoli N, Petty BG, Compton C, Cristofanilli M, Deisseroth A, Hayes DF, Kapke G, Kumar P, Lee JSh, et al: Considerations in the development of circulating tumor cell technology for clinical use. J Transl Med. 10:1382012. View Article : Google Scholar : PubMed/NCBI | |
Tanaka F, Yoneda K, Kondo N, Hashimoto M, Takuwa T, Matsumoto S, Okumura Y, Rahman S, Tsubota N, Tsujimura T, et al: Circulating tumor cell as a diagnostic marker in primary lung cancer. Clin Cancer Res. 15:6980–6986. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hou JM, Greystoke A, Lancashire L, Cummings J, Ward T, Board R, Amir E, Hughes S, Krebs M, Hughes A, et al: Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy. Am J Pathol. 175:808–816. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hofman V, Long E, Ilie M, Bonnetaud C, Vignaud JM, Fléjou JF, Lantuejoul S, Piaton E, Mourad N, Butori C, et al: Morphological analysis of circulating tumour cells in patients undergoing surgery for non-small cell lung carcinoma using the isolation by size of epithelial tumour cell (ISET) method. Cytopathology. 23:30–38. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nieva J, Wendel M, Luttgen MS, Marrinucci D, Bazhenova L, Kolatkar A, Santala R, Whittenberger B, Burke J, Torrey M, et al: High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: A longitudinal analysis. Phys Biol. 9:0160042012. View Article : Google Scholar : PubMed/NCBI | |
Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Hu Z, Barney KA and Degen JL: Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood. 110:133–141. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schumacher D, Strilic B, Sivaraj KK, Wettschureck N and Offermanns S: Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y 2 receptor. Cancer Cell. 24:130–137. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F and Dive C: Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol. 178:989–996. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stone JP and Wagner DD: P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J Clin Invest. 92:804–813. 1993. View Article : Google Scholar : PubMed/NCBI | |
Coleman RE: Skeletal complications of malignancy. Cancer. 80(Suppl 8): S1588–S1594. 1997. View Article : Google Scholar | |
Hart IR and Fidler IJ: Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 40:2281–2287. 1980.PubMed/NCBI | |
Stetler-Stevenson WG and Kleiner DEJ: Molecular biology of cancer: Invasion and metastases. Cancer: Principles and Practice of Oncology. 6:123–136. 2001. | |
Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al: Involvement of chemokine receptors in breast cancer metastasis. Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI | |
Richert MM, Vaidya KS, Mills CN, Wong D, Korz W, Hurst DR and Welch DR: Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. Oncol Rep. 21:761–767. 2009.PubMed/NCBI | |
Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D and Luker GD: CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 64:8604–8612. 2004. View Article : Google Scholar : PubMed/NCBI | |
Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP and Strieter RM: The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med. 167:1676–1686. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hirbe AC, Rubin J, Uluçkan O, Morgan EA, Eagleton MC, Prior JL, Piwnica-Worms D and Weilbaecher KN: Disruption of CXCR4 enhances osteoclastogenesis and tumor growth in bone. Proc Natl Acad Sci USA. 104:14062–14067. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hirbe AC, Morgan EA and Weilbaecher KN: The CXCR4/SDF-1 chemokine axis: A potential therapeutic target for bone metastases? Curr Pharm Des. 16:1284–1290. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nakamura ES, Koizumi K, Kobayashi M, Saitoh Y, Arita Y, Nakayama T, Sakurai H, Yoshie O and Saiki I: RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis. 23:9–18. 2006. View Article : Google Scholar : PubMed/NCBI | |
Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, Penfold ME, Sunshine MJ, Littman DR, Kuo CJ, et al: A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion and tumor development. J Exp Med. 203:2201–2213. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Kim HN, Kim KO, Jin WJ, Lee S, Kim HH, Ha H and Lee ZH: CXCL10 promotes osteolytic bone metastasis by enhancing cancer outgrowth and osteoclastogenesis. Cancer Res. 72:3175–3186. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zhang JP, Guo S, Min J, Liu LL, Su HC, Feng YM and Zhang HL: Down-regulation of β3-integrin inhibits bone metastasis of small cell lung cancer. Mol Biol Rep. 39:3029–3035. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yin H and Deng J: Advances in lung stem cells and lung cancer stem cells. Zhongguo Fei Ai Za Zhi. 18:633–639. 2015.(In Chinese). PubMed/NCBI | |
Hiraga T, Ito S and Nakamura H: Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility and hyaluronan production. Cancer Res. 73:4112–4122. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Tannehill-Gregg SH, Nadella MV, He G, Levine A, Cao Y and Rosol TJ: Parathyroid hormone-related protein and ezrin are up-regulated in human lung cancer bone metastases. Clin Exp Metastasis. 24:107–119. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li M, Amizuka N, Takeuchi K, Freitas PH, Kawano Y, Hoshino M, Oda K, Nozawa-Inoue K and Maeda T: Histochemical evidence of osteoclastic degradation of extracellular matrix in osteolytic metastasis originating from human lung small carcinoma (SBC-5) cells. Microsc Res Tech. 69:73–83. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yoneda T and Hiraga T: Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun. 328:679–687. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Wang Y, Xu M, Dong H, Liu N, Zhou J, Pang H, Ma N, Zhang N, Pei Y, et al: MGr1-Ag promotes invasion and bone metastasis of small-cell lung cancer in vitro and in vivo. Oncol Rep. 29:2283–2290. 2013.PubMed/NCBI | |
Alves F, Vogel W, Mossie K, Millauer B, Höfler H and Ullrich A: Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene. 10:609–618. 1995.PubMed/NCBI | |
Valencia K, Ormazábal C, Zandueta C, Luis-Ravelo D, Antón I, Pajares MJ, Agorreta J, Montuenga LM, Martínez-Canarias S, Leitinger B and Lecanda F: Inhibition of collagen receptor discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Clin Cancer Res. 18:969–980. 2012. View Article : Google Scholar : PubMed/NCBI | |
Catena R, Luis-Ravelo D, Antón I, Zandueta C, Salazar-Colocho P, Larzábal L, Calvo A and Lecanda F: PDGFR signaling blockade in marrow stroma impairs lung cancer bone metastasis. Cancer Res. 71:164–174. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sela J: Bone remodeling in pathological conditions. A scanning electron microscopic study. Calcif Tissue Res. 23:229–234. 1977. View Article : Google Scholar : PubMed/NCBI | |
Boyde A, Maconnachie E, Reid SA, Delling G and Mundy GR: Scanning electron microscopy in bone pathology: Review of methods, potential and applications. Scan Electron Microsc. 1537–1554. 1986.PubMed/NCBI | |
Guise TA: The vicious cycle of bone metastases. J Musculoskelet Neuronal Interact. 2:570–572. 2002.PubMed/NCBI | |
Karapanagiotou EM, Terpos E, Dilana KD, Alamara C, Gkiozos I, Polyzos A and Syrigos KN: Serum bone turnover markers may be involved in the metastatic potential of lung cancer patients. Med Oncol. 27:332–338. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Guo W, Ren T, Lou Z, Lu X, Zhang S, Lu Q and Sun Y: Differential expression of the RANKL/RANK/OPG system is associated with bone metastasis in human non-small cell lung cancer. PLoS One. 8:e583612013. View Article : Google Scholar : PubMed/NCBI | |
Feeley BT, Liu NQ, Conduah AH, Krenek L, Roth K, Dougall WC, Huard J, Dubinett S and Lieberman JR: Mixed metastatic lung cancer lesions in bone are inhibited by noggin overexpression and Rank: Fc administration. J Bone Miner Res. 21:1571–1580. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bundred NJ, Walker RA, Ratcliffe WA, Warwick J, Morrison JM and Ratcliffe JG: Parathyroid hormone related protein and skeletal morbidity in breast cancer. Eur J Cancer. 28:690–692. 1992. View Article : Google Scholar : PubMed/NCBI | |
Burton DW, Geller J, Yang M, Jiang P, Barken I, Hastings RH, Hoffman RM and Deftos LJ: Monitoring of skeletal progression of prostate cancer by GFP imaging, X-ray and serum OPG and PTHrP. Prostate. 62:275–281. 2005. View Article : Google Scholar : PubMed/NCBI | |
Miki T, Yano S, Hanibuchi M, Kanematsu T, Muguruma H and Sone S: Parathyroid hormone-related protein (PTHrP) is responsible for production of bone metastasis, but not visceral metastasis, by human small cell lung cancer SBC-5 cells in natural killer cell-depleted SCID mice. Int J Cancer. 108:511–515. 2004. View Article : Google Scholar : PubMed/NCBI | |
Muguruma H, Yano S, Kakiuchi S, Uehara H, Kawatani M, Osada H and Sone S: Reveromycin A inhibits osteolytic bone metastasis of small-cell lung cancer cells, SBC-5, through an antiosteoclastic activity. Clin Cancer Res. 11:8822–8828. 2005. View Article : Google Scholar : PubMed/NCBI | |
Iguchi H, Tanaka S, Ozawa Y, Kashiwakuma T, Kimura T, Hiraga T, Ozawa T and Kono T: An experimental model of bone metastasis by human lung cancer cells: The role of parathyroid hormone-related protein in bone metastasis. Cancer Res. 56:4040–4043. 1996.PubMed/NCBI | |
Lorch G, Gilmore JL, Koltz PF, Gonterman RM, Laughner R, Lewis DA, Konger RL, Nadella KS, Toribio RE, Rosol TJ and Foley J: Inhibition of epidermal growth factor receptor signalling reduces hypercalcaemia induced by human lung squamous-cell carcinoma in athymic mice. Br J Cancer. 97:183–193. 2007. View Article : Google Scholar : PubMed/NCBI | |
Herroon MK, Rajagurubandara E, Rudy DL, Chalasani A, Hardaway AL and Podgorski I: Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene. 32:1580–1593. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lawrence T and Natoli G: Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nat Rev Immunol. 11:750–761. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A and Di W: A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res. 7:192014. View Article : Google Scholar : PubMed/NCBI | |
Hiraoka K, Zenmyo M, Watari K, Iguchi H, Fotovati A, Kimura YN, Hosoi F, Shoda T, Nagata K, Osada H, et al: Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Cancer Sci. 99:1595–1602. 2008. View Article : Google Scholar : PubMed/NCBI | |
Krzeszinski JY and Wan Y: New therapeutic targets for cancer bone metastasis. Trends Pharmacol Sci. 36:360–373. 2015. View Article : Google Scholar : PubMed/NCBI | |
Antón I, Molina E, Luis-Ravelo D, Zandueta C, Valencia K, Ormazabal C, Martínez-Canarias S, Perurena N, Pajares MJ, Agorreta J, et al: Receptor of activated protein C promotes metastasis and correlates with clinical outcome in lung adenocarcinoma. Am J Respir Crit Care Med. 186:96–105. 2012. View Article : Google Scholar : PubMed/NCBI | |
Luis-Ravelo D, Antón I, Zandueta C, Valencia K, Ormazábal C, Martínez-Canarias S, Guruceaga E, Perurena N, Vicent S, De Las Rivas J and Lecanda F: A gene signature of bone metastatic colonization sensitizes for tumor-induced osteolysis and predicts survival in lung cancer. Oncogene. 33:5090–5099. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL and Massagué J: WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 138:51–62. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gong M, Ma J, Guillemette R, Zhou M, Yang Y, Yang Y, Hock JM and Yu X: miR-335 inhibits small cell lung cancer bone metastases via IGF-IR and RANKL pathways. Mol Cancer Res. 12:101–110. 2014. View Article : Google Scholar : PubMed/NCBI | |
Valencia K, Martín-Fernández M, Zandueta C, Ormazábal C, Martínez-Canarias S, Bandrés E, de la Piedra C and Lecanda F: miR-326 associates with biochemical markers of bone turnover in lung cancer bone metastasis. Bone. 52:532–539. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ell B and Kang Y: MicroRNAs as regulators of bone homeostasis and bone metastasis. Bonekey Rep. 3:5492014. View Article : Google Scholar : PubMed/NCBI | |
Napoli LD, Hansen HH, Muggia FM and Twigg HL: The incidence of osseous involvement in lung cancer, with special reference to the development of osteoblastic changes. Radiology. 108:17–21. 1973. View Article : Google Scholar : PubMed/NCBI |