1
|
Bacci G, Briccoli A, Ferrari S, Longhi A,
Mercuri M, Capanna R, Donati D, Lari S, Forni C and DePaolis M:
Neoadjuvant chemotherapy for osteosarcoma of the extremity:
Long-term results of the Rizzoli's 4th protocol. Eur J Cancer.
37:2030–2039. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bielack SS, Kempf-Bielack B, Delling G,
Exner GU, Flege S, Helmke K, Kotz R, Salzer-Kuntschik M, Werner M,
Winkelmann W, et al: Prognostic factors in high-grade osteosarcoma
of the extremities or trunk: An analysis of 1,702 patients treated
on neoadjuvant cooperative osteosarcoma study group protocols. J
Clin Oncol. 20:776–790. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lewis IJ, Nooij MA, Whelan J, Sydes MR,
Grimer R, Hogendoorn PC, Memon MA, Weeden S, Uscinska BM, van
Glabbeke M, et al: Improvement in histologic response but not
survival in osteosarcoma patients treated with intensified
chemotherapy: A randomized phase III trial of the European
Osteosarcoma Intergroup. J Natl Cancer Inst. 99:112–128. 2007.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Eselgrim M, Grunert H, Kühne T, Zoubek A,
Kevric M, Bürger H, Jürgens H, Mayer-Steinacker R, Gosheger G and
Bielack SS: Dose intensity of chemotherapy for osteosarcoma and
outcome in the Cooperative Osteosarcoma Study Group (COSS) trials.
Pediatr Blood Cancer. 47:42–50. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Meyers PA, Gorlick R, Heller G, Casper E,
Lane J, Huvos AG and Healey JH: Intensification of preoperative
chemotherapy for osteogenic sarcoma: Results of the Memorial
Sloan-Kettering (T12) protocol. J Clin Oncol. 16:2452–2458. 1998.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Huvos AG, Rosen G and Marcove RC: Primary
osteogenic sarcoma: Pathologic aspects in 20 patients after
treatment with chemotherapy en bloc resection, and prosthetic bone
replacement. Arch Pathol Lab Med. 101:14–18. 1977.PubMed/NCBI
|
7
|
Picci P, Bacci G, Campanacci M, Gasparini
M, Pilotti S, Cerasoli S, Bertoni F, Guerra A, Capanna R, Albisinni
U, et al: Histologic evaluation of necrosis in osteosarcoma induced
by chemotherapy. Regional mapping of viable and nonviable tumor.
Cancer. 56:1515–1521. 1985. View Article : Google Scholar : PubMed/NCBI
|
8
|
Guo J, Reddick WE, Glass JO, Ji Q, Billups
CA, Wu J, Hoffer FA, Kaste SC, Jenkins JJ, Flores XC Ortega, et al:
Dynamic contrast-enhanced magnetic resonance imaging as a
prognostic factor in predicting event-free and overall survival in
pediatric patients with osteosarcoma. Cancer. 118:3776–3785. 2012.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Kubo T, Furuta T, Johan MP, Adachi N and
Ochi M: Percent slope analysis of dynamic magnetic resonance
imaging for assessment of chemotherapy response of osteosarcoma or
Ewing sarcoma: Systematic review and meta-analysis. Skeletal
Radiol. 45:1235–1242. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Inaki A, Taki J, Wakabayashi H, Sumiya H,
Zen Y, Tsuchiya H and Kinuya S: Thallium-201 scintigraphy for the
assessment of long-term prognosis in patients with osteosarcoma.
Ann Nucl Med. 26:545–550. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kubo T, Shimose S, Fujimori J, Furuta T
and Ochi M: Quantitative (201)thallium scintigraphy for prediction
of histological response to neoadjuvant chemotherapy in
osteosarcoma; systematic review and meta-analysis. Surg Oncol.
24:194–199. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hongtao L, Hui Z, Bingshun W, Xiaojin W,
Zhiyu W, Shuier Z, Aina H, Yuanjue S, Daliu M, Zan S and Yang Y:
18F-FDG positron emission tomography for the assessment of
histological response to neoadjuvant chemotherapy in osteosarcomas:
A meta-analysis. Surg Oncol. 21:e165–e170. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
van Rijswijk CS, Kunz P, Hogendoorn PC,
Taminiau AH, Doornbos J and Bloem JL: Diffusion-weighted MRI in the
characterization of soft-tissue tumors. J Magn Reson Imaging.
15:302–307. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Baur A, Huber A, Arbogast S, Dürr HR, Zysk
S, Wendtner C, Deimling M and Reiser M: Diffusion-weighted imaging
of tumor recurrencies and posttherapeutical soft-tissue changes in
humans. Eur Radiol. 11:828–833. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Herneth AM, Friedrich K, Weidekamm C,
Schibany N, Krestan C, Czerny C and Kainberger F: Diffusion
weighted imaging of bone marrow pathologies. Eur J Radiol.
55:74–83. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
MacKenzie JD, Gonzalez L, Hernandez A,
Ruppert K and Jaramillo D: Diffusion-weighted and diffusion tensor
imaging for pediatric musculoskeletal disorders. Pediatr Radiol.
37:781–788. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nonomura Y, Yasumoto M, Yoshimura R,
Haraguchi K, Ito S, Akashi T and Ohashi I: Relationship between
bone marrow cellularity and apparent diffusion coefficient. J Magn
Reson Imaging. 13:757–760. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Humphries PD, Sebire NJ, Siegel MJ and
Olsen ØE: Tumors in pediatric patients at diffusion-weighted MR
imaging: Apparent diffusion coefficient and tumor cellularity.
Radiology. 245:848–854. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lang P, Wendland MF, Saeed M, Gindele A,
Rosenau W, Mathur A, Gooding CA and Genant HK: Osteogenic
osteosarcoma: Noninvasive in vivo assessment of tumor necrosis with
diffusion-weighted MR imaging. Radiology. 206:227–235. 1998.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Thoeny HC, De Keyzer F, Chen F, Ni Y,
Landuyt W, Verbeken EK, Bosmans H, Marchal G and Hermans R:
Diffusion-weighted MR imaging in monitoring the effect of a
vascular targeting agent on rhabdomyosarcoma in rats. Radiology.
234:756–764. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liberati A, Altman DG, Tetzlaff J, Mulrow
C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J
and Moher D: The PRISMA statement for reporting systematic reviews
and meta-analyses of studies that evaluate health care
interventions: Explanation and elaboration. PLoS Med.
6:e10001002009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Whiting PF, Rutjes AW, Westwood ME,
Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA and Bossuyt
PM: QUADAS-2: A revised tool for the quality assessment of
diagnostic accuracy studies. Ann Intern Med. 155:529–536. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bajpai J, Gamnagatti S, Kumar R, Sreenivas
V, Sharma MC, Khan SA, Rastogi S, Malhotra A, Safaya R and Bakhshi
S: Role of MRI in osteosarcoma for evaluation and prediction of
chemotherapy response: Correlation with histological necrosis.
Pediatr Radiol. 41:441–450. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hayashida Y, Yakushiji T, Awai K, Katahira
K, Nakayama Y, Shimomura O, Kitajima M, Hirai T, Yamashita Y and
Mizuta H: Monitoring therapeutic responses of primary bone tumors
by diffusion-weighted image: Initial results. Eur Radiol.
16:2637–2643. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Uhl M, Saueressig U, van Buiren M, Kontny
U, Niemeyer C, Köhler G, Ilyasov K and Langer M: Osteosarcoma:
Preliminary results of in vivo assessment of tumor necrosis after
chemotherapy with diffusion- and perfusion-weighted magnetic
resonance imaging. Invest Radiol. 41:618–623. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Baunin C, Schmidt G, Baumstarck K, Bouvier
C, Gentet JC, Aschero A, Ruocco A, Bourlière B, Gorincour G,
Desvignes C, et al: Value of diffusion-weighted images in
differentiating mid-course responders to chemotherapy for
osteosarcoma compared to the histological response: Preliminary
results. Skeletal Radiol. 41:1141–1149. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Byun BH, Kong CB, Lim I, Choi CW, Song WS,
Cho WH, Jeon DG, Koh JS, Lee SY and Lim SM: Combination of 18F-FDG
PET/CT and diffusion-weighted MR imaging as a predictor of
histologic response to neoadjuvant chemotherapy: Preliminary
results in osteosarcoma. J Nucl Med. 54:1053–1059. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Oka K, Yakushiji T, Sato H, Hirai T,
Yamashita Y and Mizuta H: The value of diffusion-weighted imaging
for monitoring the chemotherapeutic response of osteosarcoma: A
comparison between average apparent diffusion coefficient and
minimum apparent diffusion coefficient. Skeletal Radiol.
39:141–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Uhl M, Saueressig U, Koehler G, Kontny U,
Niemeyer C, Reichardt W, Ilyasof K, Bley T and Langer M: Evaluation
of tumour necrosis during chemotherapy with diffusion-weighted MR
imaging: Preliminary results in osteosarcomas. Pediatr Radiol.
36:1306–1311. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang CS, Du LJ, Si MJ, Yin QH, Chen L, Shu
M, Yuan F, Fei XC and Ding XY: Noninvasive assessment of response
to neoadjuvant chemotherapy in osteosarcoma of long bones with
diffusion-weighted imaging: An initial in vivo study. PLoS One.
8:e726792013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Im HJ, Kim TS, Park SY, Min HS, Kim JH,
Kang HG, Park SE, Kwon MM, Yoon JH, Park HJ, et al: Prediction of
tumour necrosis fractions using metabolic and volumetric 18F-FDG
PET/CT indices, after one course and at the completion of
neoadjuvant chemotherapy, in children and young adults with
osteosarcoma. Eur J Nucl Med Mol Imaging. 39:39–49. 2012.
View Article : Google Scholar : PubMed/NCBI
|